MCP HubMCP Hub
スキル一覧に戻る

sports-betting-analyzer

OneWave-AI
更新日 Today
143 閲覧
11
4
11
GitHubで表示
その他ai

について

このClaudeスキルは、スポーツベッティング市場(スプレッド、オーバー/アンダー、プロップベットなど)を分析し、過去の傾向や状況統計を検証することでバリューベットを特定します。教育目的のための実践的な提案を構造化されたマークダウン形式で出力します。開発者はスポーツベッティング分析ツールとして本機能を活用できますが、娯楽および教育目的に限定されている点に留意してください。

クイックインストール

Claude Code

推奨
プラグインコマンド推奨
/plugin add https://github.com/OneWave-AI/claude-skills
Git クローン代替
git clone https://github.com/OneWave-AI/claude-skills.git ~/.claude/skills/sports-betting-analyzer

このコマンドをClaude Codeにコピー&ペーストしてスキルをインストールします

ドキュメント

Sports Betting Analyzer

Analyze spreads, over/unders, prop bets. Historical trends, situational stats, value bet identification. For entertainment/education only.

Instructions

You are an expert sports betting analyst. Analyze betting markets, identify value, and provide educational analysis. Always include responsible gambling disclaimers.

Output Format

# Sports Betting Analyzer Output

**Generated**: {timestamp}

---

## Results

[Your formatted output here]

---

## Recommendations

[Actionable next steps]

Best Practices

  1. Be Specific: Focus on concrete, actionable outputs
  2. Use Templates: Provide copy-paste ready formats
  3. Include Examples: Show real-world usage
  4. Add Context: Explain why recommendations matter
  5. Stay Current: Use latest best practices for sports

Common Use Cases

Trigger Phrases:

  • "Help me with [use case]"
  • "Generate [output type]"
  • "Create [deliverable]"

Example Request:

"[Sample user request here]"

Response Approach:

  1. Understand user's context and goals
  2. Generate comprehensive output
  3. Provide actionable recommendations
  4. Include examples and templates
  5. Suggest next steps

Remember: Focus on delivering value quickly and clearly!

GitHub リポジトリ

OneWave-AI/claude-skills
パス: sports-betting-analyzer

関連スキル

evaluating-llms-harness

テスト

This Claude Skill runs the lm-evaluation-harness to benchmark LLMs across 60+ standardized academic tasks like MMLU and GSM8K. It's designed for developers to compare model quality, track training progress, or report academic results. The tool supports various backends including HuggingFace and vLLM models.

スキルを見る

sglang

メタ

SGLang is a high-performance LLM serving framework that specializes in fast, structured generation for JSON, regex, and agentic workflows using its RadixAttention prefix caching. It delivers significantly faster inference, especially for tasks with repeated prefixes, making it ideal for complex, structured outputs and multi-turn conversations. Choose SGLang over alternatives like vLLM when you need constrained decoding or are building applications with extensive prefix sharing.

スキルを見る

cloudflare-turnstile

メタ

This skill provides comprehensive guidance for implementing Cloudflare Turnstile as a CAPTCHA-alternative bot protection system. It covers integration for forms, login pages, API endpoints, and frameworks like React/Next.js/Hono, while handling invisible challenges that maintain user experience. Use it when migrating from reCAPTCHA, debugging error codes, or implementing token validation and E2E tests.

スキルを見る

langchain

メタ

LangChain is a framework for building LLM applications using agents, chains, and RAG pipelines. It supports multiple LLM providers, offers 500+ integrations, and includes features like tool calling and memory management. Use it for rapid prototyping and deploying production systems like chatbots, autonomous agents, and question-answering services.

スキルを見る