MCP HubMCP Hub
スキル一覧に戻る

workout-program-designer

OneWave-AI
更新日 Today
39 閲覧
11
4
11
GitHubで表示
デザインaiapidesign

について

このスキルは、筋力、有酸素運動、柔軟性といった特定のフィットネス目標に合わせて、個人に最適化されたワークアウトプログラムを生成します。自動的に、段階的過負荷スケジュール、休息日の最適化、機器の適応などの機能を備えた計画を作成します。開発者はこれを活用し、健康・ウェルネスアプリケーションに、自動化された専門家レベルのフィットネスプログラム設計を追加できます。

クイックインストール

Claude Code

推奨
プラグインコマンド推奨
/plugin add https://github.com/OneWave-AI/claude-skills
Git クローン代替
git clone https://github.com/OneWave-AI/claude-skills.git ~/.claude/skills/workout-program-designer

このコマンドをClaude Codeにコピー&ペーストしてスキルをインストールします

ドキュメント

Workout Program Designer

Custom training plans by goal (strength, cardio, flexibility). Progressive overload programming, rest day optimization, home vs gym adaptations, deload weeks.

Instructions

You are an expert fitness trainer and program designer. Create personalized workout programs with: goal-specific programming (strength/cardio/flexibility), progressive overload schedules, rest day optimization, equipment adaptations (home vs gym), deload week planning, injury prevention, and progress tracking metrics.

Output Format

# Workout Program Designer Output

**Generated**: {timestamp}

---

## Results

[Your formatted output here]

---

## Recommendations

[Actionable next steps]

Best Practices

  1. Be Specific: Focus on concrete, actionable outputs
  2. Use Templates: Provide copy-paste ready formats
  3. Include Examples: Show real-world usage
  4. Add Context: Explain why recommendations matter
  5. Stay Current: Use latest best practices for fitness

Common Use Cases

Trigger Phrases:

  • "Help me with [use case]"
  • "Generate [output type]"
  • "Create [deliverable]"

Example Request:

"[Sample user request here]"

Response Approach:

  1. Understand user's context and goals
  2. Generate comprehensive output
  3. Provide actionable recommendations
  4. Include examples and templates
  5. Suggest next steps

Remember: Focus on delivering value quickly and clearly!

GitHub リポジトリ

OneWave-AI/claude-skills
パス: workout-program-designer

関連スキル

content-collections

メタ

This skill provides a production-tested setup for Content Collections, a TypeScript-first tool that transforms Markdown/MDX files into type-safe data collections with Zod validation. Use it when building blogs, documentation sites, or content-heavy Vite + React applications to ensure type safety and automatic content validation. It covers everything from Vite plugin configuration and MDX compilation to deployment optimization and schema validation.

スキルを見る

creating-opencode-plugins

メタ

This skill provides the structure and API specifications for creating OpenCode plugins that hook into 25+ event types like commands, files, and LSP operations. It offers implementation patterns for JavaScript/TypeScript modules that intercept and extend the AI assistant's lifecycle. Use it when you need to build event-driven plugins for monitoring, custom handling, or extending OpenCode's capabilities.

スキルを見る

evaluating-llms-harness

テスト

This Claude Skill runs the lm-evaluation-harness to benchmark LLMs across 60+ standardized academic tasks like MMLU and GSM8K. It's designed for developers to compare model quality, track training progress, or report academic results. The tool supports various backends including HuggingFace and vLLM models.

スキルを見る

sglang

メタ

SGLang is a high-performance LLM serving framework that specializes in fast, structured generation for JSON, regex, and agentic workflows using its RadixAttention prefix caching. It delivers significantly faster inference, especially for tasks with repeated prefixes, making it ideal for complex, structured outputs and multi-turn conversations. Choose SGLang over alternatives like vLLM when you need constrained decoding or are building applications with extensive prefix sharing.

スキルを見る