context7-auto-research
について
このClaude Skillは、Context7 APIを通じてライブラリやフレームワークの最新ドキュメントを自動的に取得します。ReactやNext.jsなどのツールに関する最新情報をClaude Code会話中に必要とする開発者に最適です。主な機能には、シームレスな使用のための自動トリガーと、より高いレート制限のための設定可能なAPIキーが含まれます。
クイックインストール
Claude Code
推奨/plugin add https://github.com/majiayu000/claude-skill-registrygit clone https://github.com/majiayu000/claude-skill-registry.git ~/.claude/skills/context7-auto-researchこのコマンドをClaude Codeにコピー&ペーストしてスキルをインストールします
ドキュメント
context7-auto-research
Overview
Automatically fetch latest library/framework documentation for Claude Code via Context7 API
When to Use
- When you need up-to-date documentation for libraries and frameworks
- When asking about React, Next.js, Prisma, or any other popular library
Installation
npx skills add -g BenedictKing/context7-auto-research
Step-by-Step Guide
- Install the skill using the command above
- Configure API key (optional, see GitHub repo for details)
- Use naturally in Claude Code conversations
Examples
See GitHub Repository for examples.
Best Practices
- Configure API keys via environment variables for higher rate limits
- Use the skill's auto-trigger feature for seamless integration
Troubleshooting
See the GitHub repository for troubleshooting guides.
Related Skills
- tavily-web, exa-search, firecrawl-scraper, codex-review
GitHub リポジトリ
関連スキル
content-collections
メタThis skill provides a production-tested setup for Content Collections, a TypeScript-first tool that transforms Markdown/MDX files into type-safe data collections with Zod validation. Use it when building blogs, documentation sites, or content-heavy Vite + React applications to ensure type safety and automatic content validation. It covers everything from Vite plugin configuration and MDX compilation to deployment optimization and schema validation.
creating-opencode-plugins
メタThis skill provides the structure and API specifications for creating OpenCode plugins that hook into 25+ event types like commands, files, and LSP operations. It offers implementation patterns for JavaScript/TypeScript modules that intercept and extend the AI assistant's lifecycle. Use it when you need to build event-driven plugins for monitoring, custom handling, or extending OpenCode's capabilities.
evaluating-llms-harness
テストThis Claude Skill runs the lm-evaluation-harness to benchmark LLMs across 60+ standardized academic tasks like MMLU and GSM8K. It's designed for developers to compare model quality, track training progress, or report academic results. The tool supports various backends including HuggingFace and vLLM models.
sglang
メタSGLang is a high-performance LLM serving framework that specializes in fast, structured generation for JSON, regex, and agentic workflows using its RadixAttention prefix caching. It delivers significantly faster inference, especially for tasks with repeated prefixes, making it ideal for complex, structured outputs and multi-turn conversations. Choose SGLang over alternatives like vLLM when you need constrained decoding or are building applications with extensive prefix sharing.
