MCP HubMCP Hub
スキル一覧に戻る

internal-comms

mpazaryna
更新日 Yesterday
56 閲覧
2
2
GitHubで表示
メタai

について

internal-commsスキルは、様々な内部コミュニケーションを作成するための、企業固有のテンプレートとガイドラインをClaudeに提供します。devlog報告、リーダーシップアップデート、プロジェクトステータスレポート、インシデントレポート、22A/22Bのようなフォーマット済みアップデートを作成する際に使用してください。このスキルは、事例ディレクトリから適切なテンプレートを読み込むことで、全ての内部コミュニケーションが標準化された形式に従うことを保証します。

クイックインストール

Claude Code

推奨
プラグインコマンド推奨
/plugin add https://github.com/mpazaryna/claude-toolkit
Git クローン代替
git clone https://github.com/mpazaryna/claude-toolkit.git ~/.claude/skills/internal-comms

このコマンドをClaude Codeにコピー&ペーストしてスキルをインストールします

ドキュメント

When to use this skill

To write internal communications, use this skill for:

  • 22A full updates (Progress, Plans, Problems)
  • 22B condensed (Progress, Plans, Problems)
  • devlog updates
  • Status reports
  • Leadership updates
  • Project updates
  • Incident reports

How to use this skill

To write any internal communication:

  1. Identify the communication type from the request
  2. Load the appropriate guideline file from the examples/ directory:
    • examples/form-22a.md - For Progress/Plans/Problems team updates
    • examples/devlog.md - For devlogs
    • examples/form-22b.md - Baby version of the 22A
    • examples/general-comms.md - For anything else that doesn't explicitly match one of the above
  3. Follow the specific instructions in that file for formatting, tone, and content gathering

If the communication type doesn't match any existing guideline, ask for clarification or more context about the desired format.

Keywords

22A updates, 22B variant, devlogs, company newsletter, company comms, weekly update, faqs, common questions, updates, internal comms

GitHub リポジトリ

mpazaryna/claude-toolkit
パス: generated-skills/internal-comms
agentic-frameworkagentic-workflowclaude-code

関連スキル

evaluating-llms-harness

テスト

This Claude Skill runs the lm-evaluation-harness to benchmark LLMs across 60+ standardized academic tasks like MMLU and GSM8K. It's designed for developers to compare model quality, track training progress, or report academic results. The tool supports various backends including HuggingFace and vLLM models.

スキルを見る

sglang

メタ

SGLang is a high-performance LLM serving framework that specializes in fast, structured generation for JSON, regex, and agentic workflows using its RadixAttention prefix caching. It delivers significantly faster inference, especially for tasks with repeated prefixes, making it ideal for complex, structured outputs and multi-turn conversations. Choose SGLang over alternatives like vLLM when you need constrained decoding or are building applications with extensive prefix sharing.

スキルを見る

cloudflare-turnstile

メタ

This skill provides comprehensive guidance for implementing Cloudflare Turnstile as a CAPTCHA-alternative bot protection system. It covers integration for forms, login pages, API endpoints, and frameworks like React/Next.js/Hono, while handling invisible challenges that maintain user experience. Use it when migrating from reCAPTCHA, debugging error codes, or implementing token validation and E2E tests.

スキルを見る

langchain

メタ

LangChain is a framework for building LLM applications using agents, chains, and RAG pipelines. It supports multiple LLM providers, offers 500+ integrations, and includes features like tool calling and memory management. Use it for rapid prototyping and deploying production systems like chatbots, autonomous agents, and question-answering services.

スキルを見る