MCP HubMCP Hub
スキル一覧に戻る

huggingface-accelerate

zechenzhangAGI
更新日 Today
525 閲覧
62
2
62
GitHubで表示
開発aiapiautomation

について

HuggingFace Accelerateは、わずか4行のコードでPyTorchスクリプトに分散トレーニング機能を追加する最もシンプルなAPIを提供します。DeepSpeed、FSDP、DDPといった複数の分散トレーニングフレームワークに対する統一インターフェースを提供するとともに、自動デバイス配置や混合精度を処理します。これにより、複雑な設定なしにPyTorchのトレーニングを複数GPUまたはノードに迅速に拡張したい開発者に最適なソリューションです。

クイックインストール

Claude Code

推奨
プラグインコマンド推奨
/plugin add https://github.com/zechenzhangAGI/AI-research-SKILLs
Git クローン代替
git clone https://github.com/zechenzhangAGI/AI-research-SKILLs.git ~/.claude/skills/huggingface-accelerate

このコマンドをClaude Codeにコピー&ペーストしてスキルをインストールします

ドキュメント

HuggingFace Accelerate - Unified Distributed Training

Quick start

Accelerate simplifies distributed training to 4 lines of code.

Installation:

pip install accelerate

Convert PyTorch script (4 lines):

import torch
+ from accelerate import Accelerator

+ accelerator = Accelerator()

  model = torch.nn.Transformer()
  optimizer = torch.optim.Adam(model.parameters())
  dataloader = torch.utils.data.DataLoader(dataset)

+ model, optimizer, dataloader = accelerator.prepare(model, optimizer, dataloader)

  for batch in dataloader:
      optimizer.zero_grad()
      loss = model(batch)
-     loss.backward()
+     accelerator.backward(loss)
      optimizer.step()

Run (single command):

accelerate launch train.py

Common workflows

Workflow 1: From single GPU to multi-GPU

Original script:

# train.py
import torch

model = torch.nn.Linear(10, 2).to('cuda')
optimizer = torch.optim.Adam(model.parameters())
dataloader = torch.utils.data.DataLoader(dataset, batch_size=32)

for epoch in range(10):
    for batch in dataloader:
        batch = batch.to('cuda')
        optimizer.zero_grad()
        loss = model(batch).mean()
        loss.backward()
        optimizer.step()

With Accelerate (4 lines added):

# train.py
import torch
from accelerate import Accelerator  # +1

accelerator = Accelerator()  # +2

model = torch.nn.Linear(10, 2)
optimizer = torch.optim.Adam(model.parameters())
dataloader = torch.utils.data.DataLoader(dataset, batch_size=32)

model, optimizer, dataloader = accelerator.prepare(model, optimizer, dataloader)  # +3

for epoch in range(10):
    for batch in dataloader:
        # No .to('cuda') needed - automatic!
        optimizer.zero_grad()
        loss = model(batch).mean()
        accelerator.backward(loss)  # +4
        optimizer.step()

Configure (interactive):

accelerate config

Questions:

  • Which machine? (single/multi GPU/TPU/CPU)
  • How many machines? (1)
  • Mixed precision? (no/fp16/bf16/fp8)
  • DeepSpeed? (no/yes)

Launch (works on any setup):

# Single GPU
accelerate launch train.py

# Multi-GPU (8 GPUs)
accelerate launch --multi_gpu --num_processes 8 train.py

# Multi-node
accelerate launch --multi_gpu --num_processes 16 \
  --num_machines 2 --machine_rank 0 \
  --main_process_ip $MASTER_ADDR \
  train.py

Workflow 2: Mixed precision training

Enable FP16/BF16:

from accelerate import Accelerator

# FP16 (with gradient scaling)
accelerator = Accelerator(mixed_precision='fp16')

# BF16 (no scaling, more stable)
accelerator = Accelerator(mixed_precision='bf16')

# FP8 (H100+)
accelerator = Accelerator(mixed_precision='fp8')

model, optimizer, dataloader = accelerator.prepare(model, optimizer, dataloader)

# Everything else is automatic!
for batch in dataloader:
    with accelerator.autocast():  # Optional, done automatically
        loss = model(batch)
    accelerator.backward(loss)

Workflow 3: DeepSpeed ZeRO integration

Enable DeepSpeed ZeRO-2:

from accelerate import Accelerator

accelerator = Accelerator(
    mixed_precision='bf16',
    deepspeed_plugin={
        "zero_stage": 2,  # ZeRO-2
        "offload_optimizer": False,
        "gradient_accumulation_steps": 4
    }
)

# Same code as before!
model, optimizer, dataloader = accelerator.prepare(model, optimizer, dataloader)

Or via config:

accelerate config
# Select: DeepSpeed → ZeRO-2

deepspeed_config.json:

{
    "fp16": {"enabled": false},
    "bf16": {"enabled": true},
    "zero_optimization": {
        "stage": 2,
        "offload_optimizer": {"device": "cpu"},
        "allgather_bucket_size": 5e8,
        "reduce_bucket_size": 5e8
    }
}

Launch:

accelerate launch --config_file deepspeed_config.json train.py

Workflow 4: FSDP (Fully Sharded Data Parallel)

Enable FSDP:

from accelerate import Accelerator, FullyShardedDataParallelPlugin

fsdp_plugin = FullyShardedDataParallelPlugin(
    sharding_strategy="FULL_SHARD",  # ZeRO-3 equivalent
    auto_wrap_policy="TRANSFORMER_AUTO_WRAP",
    cpu_offload=False
)

accelerator = Accelerator(
    mixed_precision='bf16',
    fsdp_plugin=fsdp_plugin
)

model, optimizer, dataloader = accelerator.prepare(model, optimizer, dataloader)

Or via config:

accelerate config
# Select: FSDP → Full Shard → No CPU Offload

Workflow 5: Gradient accumulation

Accumulate gradients:

from accelerate import Accelerator

accelerator = Accelerator(gradient_accumulation_steps=4)

model, optimizer, dataloader = accelerator.prepare(model, optimizer, dataloader)

for batch in dataloader:
    with accelerator.accumulate(model):  # Handles accumulation
        optimizer.zero_grad()
        loss = model(batch)
        accelerator.backward(loss)
        optimizer.step()

Effective batch size: batch_size * num_gpus * gradient_accumulation_steps

When to use vs alternatives

Use Accelerate when:

  • Want simplest distributed training
  • Need single script for any hardware
  • Use HuggingFace ecosystem
  • Want flexibility (DDP/DeepSpeed/FSDP/Megatron)
  • Need quick prototyping

Key advantages:

  • 4 lines: Minimal code changes
  • Unified API: Same code for DDP, DeepSpeed, FSDP, Megatron
  • Automatic: Device placement, mixed precision, sharding
  • Interactive config: No manual launcher setup
  • Single launch: Works everywhere

Use alternatives instead:

  • PyTorch Lightning: Need callbacks, high-level abstractions
  • Ray Train: Multi-node orchestration, hyperparameter tuning
  • DeepSpeed: Direct API control, advanced features
  • Raw DDP: Maximum control, minimal abstraction

Common issues

Issue: Wrong device placement

Don't manually move to device:

# WRONG
batch = batch.to('cuda')

# CORRECT
# Accelerate handles it automatically after prepare()

Issue: Gradient accumulation not working

Use context manager:

# CORRECT
with accelerator.accumulate(model):
    optimizer.zero_grad()
    accelerator.backward(loss)
    optimizer.step()

Issue: Checkpointing in distributed

Use accelerator methods:

# Save only on main process
if accelerator.is_main_process:
    accelerator.save_state('checkpoint/')

# Load on all processes
accelerator.load_state('checkpoint/')

Issue: Different results with FSDP

Ensure same random seed:

from accelerate.utils import set_seed
set_seed(42)

Advanced topics

Megatron integration: See references/megatron-integration.md for tensor parallelism, pipeline parallelism, and sequence parallelism setup.

Custom plugins: See references/custom-plugins.md for creating custom distributed plugins and advanced configuration.

Performance tuning: See references/performance.md for profiling, memory optimization, and best practices.

Hardware requirements

  • CPU: Works (slow)
  • Single GPU: Works
  • Multi-GPU: DDP (default), DeepSpeed, or FSDP
  • Multi-node: DDP, DeepSpeed, FSDP, Megatron
  • TPU: Supported
  • Apple MPS: Supported

Launcher requirements:

  • DDP: torch.distributed.run (built-in)
  • DeepSpeed: deepspeed (pip install deepspeed)
  • FSDP: PyTorch 1.12+ (built-in)
  • Megatron: Custom setup

Resources

GitHub リポジトリ

zechenzhangAGI/AI-research-SKILLs
パス: 08-distributed-training/accelerate
aiai-researchclaudeclaude-codeclaude-skillscodex

関連スキル

content-collections

メタ

This skill provides a production-tested setup for Content Collections, a TypeScript-first tool that transforms Markdown/MDX files into type-safe data collections with Zod validation. Use it when building blogs, documentation sites, or content-heavy Vite + React applications to ensure type safety and automatic content validation. It covers everything from Vite plugin configuration and MDX compilation to deployment optimization and schema validation.

スキルを見る

creating-opencode-plugins

メタ

This skill provides the structure and API specifications for creating OpenCode plugins that hook into 25+ event types like commands, files, and LSP operations. It offers implementation patterns for JavaScript/TypeScript modules that intercept and extend the AI assistant's lifecycle. Use it when you need to build event-driven plugins for monitoring, custom handling, or extending OpenCode's capabilities.

スキルを見る

evaluating-llms-harness

テスト

This Claude Skill runs the lm-evaluation-harness to benchmark LLMs across 60+ standardized academic tasks like MMLU and GSM8K. It's designed for developers to compare model quality, track training progress, or report academic results. The tool supports various backends including HuggingFace and vLLM models.

スキルを見る

sglang

メタ

SGLang is a high-performance LLM serving framework that specializes in fast, structured generation for JSON, regex, and agentic workflows using its RadixAttention prefix caching. It delivers significantly faster inference, especially for tasks with repeated prefixes, making it ideal for complex, structured outputs and multi-turn conversations. Choose SGLang over alternatives like vLLM when you need constrained decoding or are building applications with extensive prefix sharing.

スキルを見る