MCP HubMCP Hub
スキル一覧に戻る

vertex-infra-expert

jeremylongshore
更新日 Today
287 閲覧
712
74
712
GitHubで表示
その他ai

について

このスキルは、開発者がTerraformを使用してVertex AIインフラをプロビジョニングするのを支援します。「vertex ai terraform」などのフレーズで起動され、Model Gardenモデル、Geminiエンドポイント、ベクトル検索、本番MLサービスの構築を扱います。暗号化や自動スケーリングなどの機能を含みながら、Terraformとgcloudツールへのアクセスを提供します。

クイックインストール

Claude Code

推奨
プラグインコマンド推奨
/plugin add https://github.com/jeremylongshore/claude-code-plugins-plus
Git クローン代替
git clone https://github.com/jeremylongshore/claude-code-plugins-plus.git ~/.claude/skills/vertex-infra-expert

このコマンドをClaude Codeにコピー&ペーストしてスキルをインストールします

ドキュメント

Prerequisites

Before using this skill, ensure:

  • Google Cloud project with Vertex AI API enabled
  • Terraform 1.0+ installed
  • gcloud CLI authenticated with appropriate permissions
  • Understanding of Vertex AI services and ML models
  • KMS keys created for encryption (if required)
  • GCS buckets for model artifacts and embeddings

Instructions

  1. Define AI Services: Identify required Vertex AI components (endpoints, vector search, pipelines)
  2. Configure Terraform: Set up backend and define project variables
  3. Provision Endpoints: Deploy Gemini or custom model endpoints with auto-scaling
  4. Set Up Vector Search: Create indices for embeddings with appropriate dimensions
  5. Configure Encryption: Apply KMS encryption to endpoints and data
  6. Implement Monitoring: Set up Cloud Monitoring for model performance
  7. Apply IAM Policies: Grant least privilege access to AI services
  8. Validate Deployment: Test endpoints and verify model availability

Output

Gemini Model Endpoint:

# {baseDir}/terraform/vertex-endpoints.tf
resource "google_vertex_ai_endpoint" "gemini_endpoint" {
  name         = "gemini-25-flash-endpoint"
  display_name = "Gemini 2.5 Flash Production"
  location     = var.region

  encryption_spec {
    kms_key_name = google_kms_crypto_key.vertex_key.id
  }
}

resource "google_vertex_ai_deployed_model" "gemini_deployment" {
  endpoint = google_vertex_ai_endpoint.gemini_endpoint.id
  model    = "publishers/google/models/gemini-2.5-flash"

  automatic_resources {
    min_replica_count = 1
    max_replica_count = 5
  }
}

Vector Search Index:

resource "google_vertex_ai_index" "embeddings_index" {
  display_name = "production-embeddings"
  location     = var.region

  metadata {
    contents_delta_uri = "gs://${google_storage_bucket.embeddings.name}/index"
    config {
      dimensions = 768
      approximate_neighbors_count = 150
      distance_measure_type = "DOT_PRODUCT_DISTANCE"

      algorithm_config {
        tree_ah_config {
          leaf_node_embedding_count = 1000
          leaf_nodes_to_search_percent = 10
        }
      }
    }
  }
}

Error Handling

API Not Enabled

  • Error: "Vertex AI API has not been used in project"
  • Solution: Enable with gcloud services enable aiplatform.googleapis.com

Model Not Found

  • Error: "Model publishers/google/models/... not found"
  • Solution: Verify model ID and region availability

Quota Exceeded

  • Error: "Quota exceeded for resource"
  • Solution: Request quota increase or reduce replica count

KMS Key Access Denied

  • Error: "Permission denied on KMS key"
  • Solution: Grant cloudkms.cryptoKeyEncrypterDecrypter role to Vertex AI service account

Vector Search Build Failed

  • Error: "Index build failed"
  • Solution: Check GCS bucket permissions and embedding format

Resources

GitHub リポジトリ

jeremylongshore/claude-code-plugins-plus
パス: plugins/devops/jeremy-vertex-terraform/skills/vertex-infra-expert
aiautomationclaude-codedevopsmarketplacemcp

関連スキル

evaluating-llms-harness

テスト

This Claude Skill runs the lm-evaluation-harness to benchmark LLMs across 60+ standardized academic tasks like MMLU and GSM8K. It's designed for developers to compare model quality, track training progress, or report academic results. The tool supports various backends including HuggingFace and vLLM models.

スキルを見る

sglang

メタ

SGLang is a high-performance LLM serving framework that specializes in fast, structured generation for JSON, regex, and agentic workflows using its RadixAttention prefix caching. It delivers significantly faster inference, especially for tasks with repeated prefixes, making it ideal for complex, structured outputs and multi-turn conversations. Choose SGLang over alternatives like vLLM when you need constrained decoding or are building applications with extensive prefix sharing.

スキルを見る

cloudflare-turnstile

メタ

This skill provides comprehensive guidance for implementing Cloudflare Turnstile as a CAPTCHA-alternative bot protection system. It covers integration for forms, login pages, API endpoints, and frameworks like React/Next.js/Hono, while handling invisible challenges that maintain user experience. Use it when migrating from reCAPTCHA, debugging error codes, or implementing token validation and E2E tests.

スキルを見る

langchain

メタ

LangChain is a framework for building LLM applications using agents, chains, and RAG pipelines. It supports multiple LLM providers, offers 500+ integrations, and includes features like tool calling and memory management. Use it for rapid prototyping and deploying production systems like chatbots, autonomous agents, and question-answering services.

スキルを見る