MCP HubMCP Hub
スキル一覧に戻る

container-security-scanner

majiayu000
更新日 Yesterday
23 閲覧
58
9
58
GitHubで表示
その他ai

について

このClaudeスキルは、コンテナイメージとランタイム環境をスキャンし、CVEとポリシー違反を検出します。開発者が設計と実装の段階でセキュリティおよびコンプライアンス要件に対応することを支援します。コンテナ化されたシステムのセキュリティ計画、構成、検証手順を作成する必要がある場合にご利用ください。

クイックインストール

Claude Code

推奨
プラグインコマンド推奨
/plugin add https://github.com/majiayu000/claude-skill-registry
Git クローン代替
git clone https://github.com/majiayu000/claude-skill-registry.git ~/.claude/skills/container-security-scanner

このコマンドをClaude Codeにコピー&ペーストしてスキルをインストールします

ドキュメント

Container Security Scanner

Purpose

  • Scan images and runtime for CVEs and policy violations.

Preconditions

  • Access to system context (repos, infra, environments)
  • Confirmed requirements and constraints
  • Required approvals for security, compliance, or governance

Inputs

  • Problem statement and scope
  • Current architecture or system constraints
  • Non-functional requirements (performance, security, compliance)
  • Target stack and environment

Outputs

  • Design or implementation plan
  • Required artifacts (diagrams, configs, specs, checklists)
  • Validation steps and acceptance criteria

Detailed Step-by-Step Procedures

  1. Clarify scope, constraints, and success metrics.
  2. Review current system state, dependencies, and integration points.
  3. Select patterns, tools, and architecture options that match constraints.
  4. Produce primary artifacts (docs/specs/configs/code stubs).
  5. Validate against requirements and known risks.
  6. Provide rollout and rollback guidance.

Decision Trees and Conditional Logic

  • If compliance or regulatory scope applies -> add required controls and audit steps.
  • If latency budget is strict -> choose low-latency storage and caching.
  • Else -> prefer cost-optimized storage and tiering.
  • If data consistency is critical -> prefer transactional boundaries and strong consistency.
  • Else -> evaluate eventual consistency or async processing.

Error Handling and Edge Cases

  • Partial failures across dependencies -> isolate blast radius and retry with backoff.
  • Data corruption or loss risk -> enable backups and verify restore path.
  • Limited access to systems -> document gaps and request access early.
  • Legacy dependencies with limited change tolerance -> use adapters and phased rollout.

Tool Requirements and Dependencies

  • CLI and SDK tooling for the target stack
  • Credentials or access tokens for required environments
  • Diagramming or spec tooling when producing docs

Stack Profiles

  • Use Profile A, B, or C from skills/STACK_PROFILES.md.
  • Note selected profile in outputs for traceability.

Validation

  • Requirements coverage check
  • Security and compliance review
  • Performance and reliability review
  • Peer or stakeholder sign-off

Rollback Procedures

  • Revert config or deployment to last known good state.
  • Roll back database migrations if applicable.
  • Verify service health, data integrity, and error rates after rollback.

Success Metrics

  • Measurable outcomes (latency, error rate, uptime, cost)
  • Acceptance thresholds defined with stakeholders

Example Workflows and Use Cases

  • Minimal: apply the skill to a small service or single module.
  • Production: apply the skill to a multi-service or multi-tenant system.

GitHub リポジトリ

majiayu000/claude-skill-registry
パス: skills/container-security-scanner

関連スキル

evaluating-llms-harness

テスト

This Claude Skill runs the lm-evaluation-harness to benchmark LLMs across 60+ standardized academic tasks like MMLU and GSM8K. It's designed for developers to compare model quality, track training progress, or report academic results. The tool supports various backends including HuggingFace and vLLM models.

スキルを見る

sglang

メタ

SGLang is a high-performance LLM serving framework that specializes in fast, structured generation for JSON, regex, and agentic workflows using its RadixAttention prefix caching. It delivers significantly faster inference, especially for tasks with repeated prefixes, making it ideal for complex, structured outputs and multi-turn conversations. Choose SGLang over alternatives like vLLM when you need constrained decoding or are building applications with extensive prefix sharing.

スキルを見る

cloudflare-turnstile

メタ

This skill provides comprehensive guidance for implementing Cloudflare Turnstile as a CAPTCHA-alternative bot protection system. It covers integration for forms, login pages, API endpoints, and frameworks like React/Next.js/Hono, while handling invisible challenges that maintain user experience. Use it when migrating from reCAPTCHA, debugging error codes, or implementing token validation and E2E tests.

スキルを見る

langchain

メタ

LangChain is a framework for building LLM applications using agents, chains, and RAG pipelines. It supports multiple LLM providers, offers 500+ integrations, and includes features like tool calling and memory management. Use it for rapid prototyping and deploying production systems like chatbots, autonomous agents, and question-answering services.

スキルを見る