content-os
について
コンテンツOSは、マスターオーケストレータースキルであり、フォワードモードでは単一のシードアイデアからあらゆるコンテンツタイプを生成し、バックワードモードでは長尺コンテンツを短尺コンテンツに分割します。リサーチ、執筆、品質レビュー、ビジュアル生成といった専門スキルのパイプラインを調整し、長尺コンテンツには完全な品質ゲートを、短尺コンテンツには迅速な精度確認を適用します。マルチフォーマットのコンテンツ作成ワークフローにおいて、「すべてを生成する」統一ボタンとしてご利用ください。
クイックインストール
Claude Code
推奨/plugin add https://github.com/majiayu000/claude-skill-registrygit clone https://github.com/majiayu000/claude-skill-registry.git ~/.claude/skills/content-osこのコマンドをClaude Codeにコピー&ペーストしてスキルをインストールします
ドキュメント
Content OS: Multi-Format Content Orchestrator
The "produce everything" button. Give one seed idea → get all content types. Or give long-form content → get it split into short-form pieces.
Quick Start
Forward Mode (Seed → All Content)
User: "Content OS: Statins myth-busting for Indians"
Output:
├── Long-form (quality-passed)
│ ├── YouTube script (Hinglish)
│ ├── Newsletter (B2C - patients)
│ ├── Newsletter (B2B - doctors)
│ ├── Editorial
│ └── Blog post
├── Short-form (accuracy-checked)
│ ├── 5-10 tweets
│ ├── 1 thread
│ └── Carousel content
└── Visual
├── Instagram carousel slides
└── Infographic concepts
Backward Mode (Long-form → Split)
User: "Content OS: [paste your blog/script/newsletter]"
Output:
├── 5-10 tweets (key points)
├── 1 thread (condensed narrative)
├── Carousel slides (visual summary)
└── Snippets (quotable sections)
How It Works
Mode Detection
- Forward Mode: Input is a topic/idea (short text, question, or concept)
- Backward Mode: Input is existing long-form content (>500 words)
Forward Mode Pipeline
PHASE 1: RESEARCH
│
├── PubMed MCP
│ └── Search for relevant papers, trials, guidelines
│
├── knowledge-pipeline (RAG)
│ └── Query AstraDB for ACC/ESC/ADA guidelines, textbooks
│
├── social-media-trends-research (optional)
│ └── Check trending angles, audience questions
│
└── OUTPUT: research-brief.md
└── Synthesized knowledge with citations
PHASE 2: LONG-FORM CONTENT (Full Quality Pipeline)
│
├── youtube-script-master
│ └── Hinglish script → Quality Review → Final
│
├── cardiology-newsletter-writer
│ └── B2C newsletter → Quality Review → Final
│
├── medical-newsletter-writer
│ └── B2B newsletter → Quality Review → Final
│
├── cardiology-editorial
│ └── Editorial → Quality Review → Final
│
└── cardiology-writer
└── Blog post → Quality Review → Final
PHASE 3: SHORT-FORM CONTENT (Quick Accuracy Pass)
│
├── x-post-creator-skill
│ └── 5-10 tweets → Accuracy Check → Final
│
├── twitter-longform-medical
│ └── Thread → Accuracy Check → Final
│
└── Extract carousel content from long-form
PHASE 4: VISUAL CONTENT
│
├── carousel-generator
│ └── Generate Instagram slides from key points
│
└── cardiology-visual-system
└── Infographic concepts (if data-heavy)
PHASE 5: OUTPUT
│
└── Organized folder structure with all content
Backward Mode Pipeline
PHASE 1: ANALYZE
│
└── Parse long-form content
├── Extract key points
├── Identify data/statistics
├── Find quotable sections
└── Determine topic/theme
PHASE 2: SPLIT (Quick Accuracy Pass)
│
├── Generate tweets (5-10)
│ └── One key point per tweet
│
├── Generate thread
│ └── Condensed narrative
│
├── Extract carousel content
│ └── Key points for slides
│
└── Create snippets
└── Quotable sections
PHASE 3: VISUAL
│
└── carousel-generator
└── Generate slides from extracted content
PHASE 4: OUTPUT
│
└── All short-form pieces organized
Quality Gates
Long-Form Quality Pipeline (FULL)
Each long-form piece goes through:
-
scientific-critical-thinking
- Evidence rigor check
- Citation verification
- Claim accuracy
- Statistical interpretation
-
peer-review
- Methodology review
- Logical consistency
- Completeness check
- Counter-argument consideration
-
content-reflection
- Pre-publish QA
- Audience appropriateness
- Clarity check
- Structure review
-
authentic-voice
- Anti-AI pattern removal
- Voice consistency
- Natural language check
Short-Form Accuracy Pass (QUICK)
Each short-form piece gets:
- Data Interpretation Check
- Are trial results stated correctly?
- Are statistics accurately represented?
- Is the study conclusion not misrepresented?
- Are effect sizes/NNT/HR correctly stated?
This is a sanity check, not full review. User can iterate manually.
Skills Invoked
Research Skills
| Skill | Purpose |
|---|---|
knowledge-pipeline | RAG + PubMed synthesis |
| PubMed MCP | Direct paper search |
social-media-trends-research | Trending angles |
Writing Skills
| Skill | Content Type | Quality Gate |
|---|---|---|
youtube-script-master | YouTube script (Hinglish) | Full |
cardiology-newsletter-writer | Patient newsletter | Full |
medical-newsletter-writer | Doctor newsletter | Full |
cardiology-editorial | Editorial | Full |
cardiology-writer | Blog post | Full |
x-post-creator-skill | Tweets | Quick |
twitter-longform-medical | Thread | Quick |
Quality Skills
| Skill | Purpose | Used For |
|---|---|---|
scientific-critical-thinking | Evidence rigor | Long-form |
peer-review | Methodology check | Long-form |
content-reflection | Pre-publish QA | Long-form |
authentic-voice | Anti-AI cleanup | Long-form |
Visual Skills
| Skill | Purpose |
|---|---|
carousel-generator | Instagram slides |
cardiology-visual-system | Infographics |
Repurposing Skills
| Skill | Purpose |
|---|---|
cardiology-content-repurposer | Backward mode splitting |
Output Structure
/output/content-os/[topic-slug]/
├── research/
│ └── research-brief.md # Foundation for all content
│
├── long-form/ # Full quality pipeline
│ ├── youtube-script.md ✓ Quality passed
│ ├── newsletter-b2c.md ✓ Quality passed
│ ├── newsletter-b2b.md ✓ Quality passed
│ ├── editorial.md ✓ Quality passed
│ └── blog.md ✓ Quality passed
│
├── short-form/ # Quick accuracy pass
│ ├── tweets.md ✓ Accuracy checked
│ ├── thread.md ✓ Accuracy checked
│ └── snippets.md ✓ Accuracy checked
│
├── visual/
│ ├── carousel/
│ │ └── slide-01.png...
│ └── infographic-concepts.md
│
└── summary.md # What was produced
Invocation Examples
Forward Mode
"Content OS: GLP-1 agonists cardiovascular benefits"
"Content OS: Statin myths for Indian patients"
"Content OS: When to get a CAC score"
"Content OS: SGLT2 inhibitors in heart failure"
Backward Mode
"Content OS: [paste your 2000-word blog post]"
"Content OS: [paste your YouTube script]"
"Content OS: [paste your newsletter]"
Configuration
What Gets Produced (Forward Mode)
| Content Type | Default | Can Skip |
|---|---|---|
| YouTube Script | Yes | Yes |
| Newsletter B2C | Yes | Yes |
| Newsletter B2B | Yes | Yes |
| Editorial | Yes | Yes |
| Blog | Yes | Yes |
| Tweets | Yes | Yes |
| Thread | Yes | Yes |
| Carousel | Yes | Yes |
Customization
"Content OS: Statins - only YouTube and tweets"
"Content OS: Heart failure - skip editorial"
"Content OS: CAC scoring - long-form only"
Integration with Existing System
Content OS orchestrates skills that already exist in your system. It doesn't replace them - it coordinates them.
You can still use individual skills directly:
youtube-script-masterfor just a scriptx-post-creator-skillfor just tweetscarousel-generatorfor just slides
Content OS is for when you want everything at once.
Notes
- Long-form content takes longer due to quality pipeline
- Short-form is faster (quick accuracy pass only)
- Research phase runs once, shared by all content
- Visual content generated from text output
- All content uses same research foundation for consistency
Voice & Quality Standards
All content follows:
- YouTube: Peter Attia depth + Hinglish (70% Hindi / 30% English)
- Twitter/Writing: Eric Topol Ground Truths style
- B2B (Doctors): JACC editorial voice
- Anti-AI: No "It's important to note", no excessive hedging
- Citations: Q1 journals, specific statistics, NNT/HR/CI when relevant
GitHub リポジトリ
関連スキル
content-collections
メタThis skill provides a production-tested setup for Content Collections, a TypeScript-first tool that transforms Markdown/MDX files into type-safe data collections with Zod validation. Use it when building blogs, documentation sites, or content-heavy Vite + React applications to ensure type safety and automatic content validation. It covers everything from Vite plugin configuration and MDX compilation to deployment optimization and schema validation.
creating-opencode-plugins
メタThis skill provides the structure and API specifications for creating OpenCode plugins that hook into 25+ event types like commands, files, and LSP operations. It offers implementation patterns for JavaScript/TypeScript modules that intercept and extend the AI assistant's lifecycle. Use it when you need to build event-driven plugins for monitoring, custom handling, or extending OpenCode's capabilities.
polymarket
メタThis skill enables developers to build applications with the Polymarket prediction markets platform, including API integration for trading and market data. It also provides real-time data streaming via WebSocket to monitor live trades and market activity. Use it for implementing trading strategies or creating tools that process live market updates.
cloudflare-turnstile
メタThis skill provides comprehensive guidance for implementing Cloudflare Turnstile as a CAPTCHA-alternative bot protection system. It covers integration for forms, login pages, API endpoints, and frameworks like React/Next.js/Hono, while handling invisible challenges that maintain user experience. Use it when migrating from reCAPTCHA, debugging error codes, or implementing token validation and E2E tests.
