MCP HubMCP Hub
スキル一覧に戻る

custom-agent-design

majiayu000
更新日 Today
22 閲覧
58
9
58
GitHubで表示
メタaidesign

について

このスキルは、開発者がClaude Agent SDKを使用してドメイン固有のエージェントを一から構築できるようにし、コンテキスト、モデル、プロンプト、カスタムツールを完全に制御できます。専門的な自動化の作成や、汎用的なワークフローを専用エージェントに変換するために設計されています。このプロセスでは、エージェントの目的定義から、Read、Grep、Globなどのサポートツールを使った実装までをガイドします。

クイックインストール

Claude Code

推奨
プラグインコマンド推奨
/plugin add https://github.com/majiayu000/claude-skill-registry
Git クローン代替
git clone https://github.com/majiayu000/claude-skill-registry.git ~/.claude/skills/custom-agent-design

このコマンドをClaude Codeにコピー&ペーストしてスキルをインストールします

ドキュメント

Custom Agent Design Skill

Design domain-specific agents using Claude Agent SDK patterns.

Purpose

Guide the design of custom agents that solve domain-specific problems with full SDK control over Context, Model, Prompt, and Tools.

When to Use

  • Building a new custom agent
  • Converting generic workflow to specialized agent
  • Designing domain-specific automation
  • Creating repeatable agent patterns

Prerequisites

  • Clear understanding of the domain problem
  • Access to Claude Agent SDK documentation
  • Understanding of when custom agents are appropriate (see @agent-evolution-path.md)

Design Process

Step 1: Define Agent Purpose

Answer these questions:

  • What specific problem does this agent solve?
  • What domain expertise does it need?
  • What is the single purpose? (One agent, one purpose)
  • Who are the stakeholders?

Output: Purpose statement (2-3 sentences)

Step 2: Select Model

Choose based on task complexity:

Task TypeModelWhy
Simple transformationsHaikuFast, cheap
Balanced tasksSonnetGood trade-off
Complex reasoningOpusHighest quality

Decision factors:

  • Speed requirements
  • Quality requirements
  • Cost constraints
  • Task complexity

Step 3: Design System Prompt

Choose architecture:

Override (system_prompt=...)

  • When: Building a new product
  • Result: NOT Claude Code anymore
  • Full control over behavior

Append (append_system_prompt=...)

  • When: Extending Claude Code
  • Result: Enhanced Claude Code
  • Adds capabilities

System Prompt Template:

# [Agent Name]

## Purpose
[Identity and role definition - 2-3 sentences]

## Instructions
[Core behaviors - bullet list]
- Behavior 1
- Behavior 2

## Constraints
[What the agent must NOT do]

## Examples (if needed)
[Input/Output pairs]

Step 4: Configure Tool Access

Questions to answer:

  • What tools does this agent need?
  • What tools should be blocked?
  • Are custom tools required?

Tool configuration:

# Whitelist approach
allowed_tools=["Read", "Write", "Bash"]

# Blacklist approach
disallowed_tools=["WebFetch", "WebSearch", "TodoWrite"]

# No default tools
disallowed_tools=["*"]

# Custom tools
mcp_servers={"domain": custom_mcp_server}
allowed_tools=["mcp__domain__tool1", "mcp__domain__tool2"]

Step 5: Add Governance (Optional)

If security/governance required:

hooks = {
    "PreToolUse": [
        HookMatcher(matcher="Read", hooks=[block_sensitive_files]),
        HookMatcher(hooks=[log_all_tool_usage]),
    ]
}

Step 6: Select Deployment Form

FormUse When
ScriptOne-off automation, ADWs
Terminal REPLInteractive tools
Backend APIUI integration
Data StreamReal-time processing
Multi-AgentComplex workflows

Step 7: Create Configuration

Assemble the ClaudeAgentOptions:

options = ClaudeAgentOptions(
    # Context
    system_prompt=load_system_prompt("agent_system.md"),

    # Model
    model="opus",

    # Tools
    allowed_tools=["Read", "Write", "custom_tool"],
    disallowed_tools=["WebFetch", "WebSearch"],

    # Custom Tools (if needed)
    mcp_servers={"domain": domain_mcp_server},

    # Governance (if needed)
    hooks=security_hooks,

    # Session (if needed)
    resume=session_id,
)

Output Format

When designing a custom agent, provide:

## Custom Agent Design

**Name:** [agent-name]
**Purpose:** [1-2 sentences]
**Domain:** [area of expertise]

### Configuration

**Model:** [haiku/sonnet/opus] - [reason]

**System Prompt Architecture:**
- Type: [Override/Append]
- Reason: [why this choice]

**Tool Access:**
- Allowed: [list]
- Disallowed: [list]
- Custom: [list if any]

**Governance:**
- Hooks: [list if any]
- Security: [considerations]

**Deployment:**
- Form: [script/repl/api/stream/multi-agent]
- Reason: [why this form]

### System Prompt

[Full system prompt content]

### Implementation Notes

[Any special considerations]

Design Checklist

  • Purpose is specific and clear
  • Model matches task complexity
  • System prompt architecture chosen (override vs append)
  • System prompt follows template
  • Tool access is minimal (only what's needed)
  • Governance hooks added if security required
  • Deployment form selected
  • Configuration assembled

Anti-Patterns

AvoidWhyInstead
Competing with Claude CodeCan't beat general agentSpecialize instead
Generic system promptsNo domain advantageDomain-specific
Too many toolsContext overheadMinimal tool set
Missing governanceSecurity riskAdd hooks
Override when append worksLoses Claude Code benefitsUse append

Cross-References

  • @agent-evolution-path.md - When to build custom agents
  • @core-four-custom.md - Core Four configuration
  • @system-prompt-architecture.md - Override vs append
  • @custom-tool-patterns.md - Tool creation
  • @model-selection skill - Model selection guidance

Version History

  • v1.0.0 (2025-12-26): Initial release

Last Updated

Date: 2025-12-26 Model: claude-opus-4-5-20251101

GitHub リポジトリ

majiayu000/claude-skill-registry
パス: skills/custom-agent-design

関連スキル

content-collections

メタ

This skill provides a production-tested setup for Content Collections, a TypeScript-first tool that transforms Markdown/MDX files into type-safe data collections with Zod validation. Use it when building blogs, documentation sites, or content-heavy Vite + React applications to ensure type safety and automatic content validation. It covers everything from Vite plugin configuration and MDX compilation to deployment optimization and schema validation.

スキルを見る

creating-opencode-plugins

メタ

This skill provides the structure and API specifications for creating OpenCode plugins that hook into 25+ event types like commands, files, and LSP operations. It offers implementation patterns for JavaScript/TypeScript modules that intercept and extend the AI assistant's lifecycle. Use it when you need to build event-driven plugins for monitoring, custom handling, or extending OpenCode's capabilities.

スキルを見る

evaluating-llms-harness

テスト

This Claude Skill runs the lm-evaluation-harness to benchmark LLMs across 60+ standardized academic tasks like MMLU and GSM8K. It's designed for developers to compare model quality, track training progress, or report academic results. The tool supports various backends including HuggingFace and vLLM models.

スキルを見る

sglang

メタ

SGLang is a high-performance LLM serving framework that specializes in fast, structured generation for JSON, regex, and agentic workflows using its RadixAttention prefix caching. It delivers significantly faster inference, especially for tasks with repeated prefixes, making it ideal for complex, structured outputs and multi-turn conversations. Choose SGLang over alternatives like vLLM when you need constrained decoding or are building applications with extensive prefix sharing.

スキルを見る