analyzing-database-indexes
について
このスキルは、database-index-advisorプラグインを使用してデータベースクエリのパターンを分析し、最適なインデックスを推奨します。クエリを高速化するために不足しているインデックスを特定し、ストレージと書き込み性能を向上させるために未使用のインデックスの削除を提案します。開発者が遅いクエリの最適化、不足インデックスの発見、未使用インデックスの整理を求める際にご利用ください。
クイックインストール
Claude Code
推奨/plugin add https://github.com/jeremylongshore/claude-code-plugins-plusgit clone https://github.com/jeremylongshore/claude-code-plugins-plus.git ~/.claude/skills/analyzing-database-indexesこのコマンドをClaude Codeにコピー&ペーストしてスキルをインストールします
ドキュメント
Overview
This skill empowers Claude to analyze database workloads, identify suboptimal or missing indexes, and suggest improvements to enhance database performance. It leverages the database-index-advisor plugin to provide concrete recommendations for indexing strategies, including identifying unused indexes for removal.
How It Works
- Initiate Analysis: The skill activates the database-index-advisor plugin.
- Workload Analysis: The plugin analyzes the database's query workload and existing index configurations.
- Recommendation Generation: The plugin identifies missing index opportunities and unused indexes, generating a report with suggested actions.
When to Use This Skill
This skill activates when you need to:
- Optimize slow-running database queries.
- Identify potential performance bottlenecks related to missing indexes.
- Reclaim storage space by identifying and removing unused indexes.
Examples
Example 1: Optimizing a Slow Query
User request: "My orders table query is running slowly. Can you help optimize it?"
The skill will:
- Activate the database-index-advisor plugin.
- Analyze the query patterns against the orders table.
- Recommend creating a specific index on the orders table to improve query performance.
Example 2: Identifying Unused Indexes
User request: "Can you help me identify and remove any unused indexes in my database?"
The skill will:
- Activate the database-index-advisor plugin.
- Analyze the existing indexes and their usage patterns.
- Generate a report listing unused indexes that can be safely removed.
Best Practices
- Database Connection: Ensure the database connection is properly configured for the plugin to access the database.
- Permissions: Grant the plugin the necessary permissions to analyze query patterns and retrieve index information.
- Impact Assessment: Review the recommended index changes and assess their potential impact on other queries before applying them.
Integration
This skill can be used in conjunction with other database management plugins to automate index creation and removal based on the advisor's recommendations. It also integrates with monitoring tools to track the performance impact of the applied index changes.
GitHub リポジトリ
関連スキル
content-collections
メタThis skill provides a production-tested setup for Content Collections, a TypeScript-first tool that transforms Markdown/MDX files into type-safe data collections with Zod validation. Use it when building blogs, documentation sites, or content-heavy Vite + React applications to ensure type safety and automatic content validation. It covers everything from Vite plugin configuration and MDX compilation to deployment optimization and schema validation.
polymarket
メタThis skill enables developers to build applications with the Polymarket prediction markets platform, including API integration for trading and market data. It also provides real-time data streaming via WebSocket to monitor live trades and market activity. Use it for implementing trading strategies or creating tools that process live market updates.
hybrid-cloud-networking
メタThis skill configures secure hybrid cloud networking between on-premises infrastructure and cloud platforms like AWS, Azure, and GCP. Use it when connecting data centers to the cloud, building hybrid architectures, or implementing secure cross-premises connectivity. It supports key capabilities such as VPNs and dedicated connections like AWS Direct Connect for high-performance, reliable setups.
llamaindex
メタLlamaIndex is a data framework for building RAG-powered LLM applications, specializing in document ingestion, indexing, and querying. It provides key features like vector indices, query engines, and agents, and supports over 300 data connectors. Use it for document Q&A, chatbots, and knowledge retrieval when building data-centric applications.
