codex-skills-index
について
このスキルは、すべてのRun-Smart AIコーチスキルの中心的なカタログおよびエントリーポイントとして機能し、それらの共通の規約、契約、安全ガードレールを定義します。開発者は、共通スキーマやテレメトリを理解するために任意のスキルを呼び出す前、または新しいスキルをオンボーディングする際にコンプライアンスを確保するために、これを利用すべきです。主な機能には、検証のための共有リファレンスの提供と、Codexが利用可能なスキルを発見できるようにすることが含まれます。
クイックインストール
Claude Code
推奨/plugin add https://github.com/majiayu000/claude-skill-registrygit clone https://github.com/majiayu000/claude-skill-registry.git ~/.claude/skills/codex-skills-indexこのコマンドをClaude Codeにコピー&ペーストしてスキルをインストールします
ドキュメント
Purpose
Defines the shared conventions, contracts, safety posture, and telemetry used by all Run-Smart AI skills. This index allows Codex to discover available skills and the rules they follow.
When Codex should use it
- Before invoking any Run-Smart skill to understand shared schemas, safety guidance, and telemetry.
- When onboarding a new skill to ensure compliance with common contracts.
Invocation guidance
- Load shared references in
_index/references/(contracts, telemetry, conventions, smoke-tests). - Select the appropriate skill directory based on the user’s need (plan generation, adjustment, insights, etc.).
- Validate request/response payloads against the schemas in
contracts.mdand skill-specific schemas.
Shared components
- Contracts:
_index/references/contracts.md - Telemetry:
_index/references/telemetry.md - Conventions:
_index/references/conventions.md - Smoke tests:
_index/references/smoke-tests.md
Safety & guardrails
- No medical diagnosis. If pain/dizziness/severe symptoms appear, advise stopping activity and consulting a qualified professional.
- Prefer conservative adjustments under uncertainty.
- Emit
SafetyFlagobjects when thresholds are crossed and log viaai_safety_flag_raised.
Integration points
- Skills are invoked from chat flows (
v0/app/api/chat/route.ts,v0/lib/enhanced-ai-coach.ts), plan generation APIs (v0/app/api/generate-plan/route.ts), background jobs (plan adjustment), and post-run screens.
Telemetry events (standard)
ai_skill_invokedai_plan_generatedai_adjustment_appliedai_insight_createdai_safety_flag_raisedai_user_feedback
GitHub リポジトリ
関連スキル
evaluating-llms-harness
テストThis Claude Skill runs the lm-evaluation-harness to benchmark LLMs across 60+ standardized academic tasks like MMLU and GSM8K. It's designed for developers to compare model quality, track training progress, or report academic results. The tool supports various backends including HuggingFace and vLLM models.
sglang
メタSGLang is a high-performance LLM serving framework that specializes in fast, structured generation for JSON, regex, and agentic workflows using its RadixAttention prefix caching. It delivers significantly faster inference, especially for tasks with repeated prefixes, making it ideal for complex, structured outputs and multi-turn conversations. Choose SGLang over alternatives like vLLM when you need constrained decoding or are building applications with extensive prefix sharing.
langchain
メタLangChain is a framework for building LLM applications using agents, chains, and RAG pipelines. It supports multiple LLM providers, offers 500+ integrations, and includes features like tool calling and memory management. Use it for rapid prototyping and deploying production systems like chatbots, autonomous agents, and question-answering services.
cloudflare-turnstile
メタThis skill provides comprehensive guidance for implementing Cloudflare Turnstile as a CAPTCHA-alternative bot protection system. It covers integration for forms, login pages, API endpoints, and frameworks like React/Next.js/Hono, while handling invisible challenges that maintain user experience. Use it when migrating from reCAPTCHA, debugging error codes, or implementing token validation and E2E tests.
