testing-load-balancers
について
このClaudeスキルは、特殊なテストシナリオ向けに、フェイルオーバーやトラフィック分散を含むロードバランサーの動作を検証します。「test load balancer」や「validate failover」などのフレーズで起動され、特定のBashツールを使用してテストを実行します。開発者は、設定済みのテスト環境でロードバランサーのパフォーマンスと耐障害性を確認する必要がある場合に、このスキルを使用すべきです。
クイックインストール
Claude Code
推奨/plugin add https://github.com/jeremylongshore/claude-code-plugins-plusgit clone https://github.com/jeremylongshore/claude-code-plugins-plus.git ~/.claude/skills/testing-load-balancersこのコマンドをClaude Codeにコピー&ペーストしてスキルをインストールします
ドキュメント
Prerequisites
Before using this skill, ensure you have:
- Test environment configured and accessible
- Required testing tools and frameworks installed
- Test data and fixtures prepared
- Appropriate permissions for test execution
- Network connectivity if testing external services
Instructions
Step 1: Prepare Test Environment
Set up the testing context:
- Use Read tool to examine configuration from {baseDir}/config/
- Validate test prerequisites are met
- Initialize test framework and load dependencies
- Configure test parameters and thresholds
Step 2: Execute Tests
Run the test suite:
- Use Bash(test:loadbalancer-*) to invoke test framework
- Monitor test execution progress
- Capture test outputs and metrics
- Handle test failures and error conditions
Step 3: Analyze Results
Process test outcomes:
- Identify passed and failed tests
- Calculate success rate and performance metrics
- Detect patterns in failures
- Generate insights for improvement
Step 4: Generate Report
Document findings in {baseDir}/test-reports/:
- Test execution summary
- Detailed failure analysis
- Performance benchmarks
- Recommendations for fixes
Output
The skill generates comprehensive test results:
Test Summary
- Total tests executed
- Pass/fail counts and percentage
- Execution time metrics
- Resource utilization stats
Detailed Results
Each test includes:
- Test name and identifier
- Execution status (pass/fail/skip)
- Actual vs. expected outcomes
- Error messages and stack traces
Metrics and Analysis
- Code coverage percentages
- Performance benchmarks
- Trend analysis across runs
- Quality gate compliance status
Error Handling
Common issues and solutions:
Environment Setup Failures
- Error: Test environment not properly configured
- Solution: Verify configuration files; check environment variables; ensure dependencies are installed
Test Execution Timeouts
- Error: Tests exceeded maximum execution time
- Solution: Increase timeout thresholds; optimize slow tests; parallelize test execution
Resource Exhaustion
- Error: Insufficient memory or disk space during testing
- Solution: Clean up temporary files; reduce concurrent test workers; increase resource allocation
Dependency Issues
- Error: Required services or databases unavailable
- Solution: Verify service health; check network connectivity; use mocks if services are down
Resources
Testing Tools
- Industry-standard testing frameworks for your language/platform
- CI/CD integration guides and plugins
- Test automation best practices documentation
Best Practices
- Maintain test isolation and independence
- Use meaningful test names and descriptions
- Keep tests fast and focused
- Implement proper setup and teardown
- Version control test artifacts
- Run tests in CI/CD pipelines
GitHub リポジトリ
関連スキル
content-collections
メタThis skill provides a production-tested setup for Content Collections, a TypeScript-first tool that transforms Markdown/MDX files into type-safe data collections with Zod validation. Use it when building blogs, documentation sites, or content-heavy Vite + React applications to ensure type safety and automatic content validation. It covers everything from Vite plugin configuration and MDX compilation to deployment optimization and schema validation.
evaluating-llms-harness
テストThis Claude Skill runs the lm-evaluation-harness to benchmark LLMs across 60+ standardized academic tasks like MMLU and GSM8K. It's designed for developers to compare model quality, track training progress, or report academic results. The tool supports various backends including HuggingFace and vLLM models.
sglang
メタSGLang is a high-performance LLM serving framework that specializes in fast, structured generation for JSON, regex, and agentic workflows using its RadixAttention prefix caching. It delivers significantly faster inference, especially for tasks with repeated prefixes, making it ideal for complex, structured outputs and multi-turn conversations. Choose SGLang over alternatives like vLLM when you need constrained decoding or are building applications with extensive prefix sharing.
cloudflare-turnstile
メタThis skill provides comprehensive guidance for implementing Cloudflare Turnstile as a CAPTCHA-alternative bot protection system. It covers integration for forms, login pages, API endpoints, and frameworks like React/Next.js/Hono, while handling invisible challenges that maintain user experience. Use it when migrating from reCAPTCHA, debugging error codes, or implementing token validation and E2E tests.
