Data Types
について
このスキルは、オプショナル値、エラー、不変コレクションを扱うためのEffect組み込みの関数型データ型(Option、Either、Chunkなど)について説明します。Effectフレームワークにおいて`Option.some`、`Either.left`、`Data.Class`などの特定の型について開発者が質問した際に使用してください。型安全で不変なデータ構造を操作するための実践的な例と解説を提供します。
クイックインストール
Claude Code
推奨/plugin add https://github.com/majiayu000/claude-skill-registrygit clone https://github.com/majiayu000/claude-skill-registry.git ~/.claude/skills/Data TypesこのコマンドをClaude Codeにコピー&ペーストしてスキルをインストールします
ドキュメント
Data Types in Effect
Overview
Effect provides immutable, type-safe data structures:
- Option - Represents optional values (Some/None)
- Either - Represents success/failure (Right/Left)
- Cause - Detailed failure information
- Exit - Effect execution result
- Data - Value equality for classes
- Chunk - Immutable indexed sequence
- Duration - Time spans
- DateTime - Date/time handling
Option
Represents a value that may or may not exist:
import { Option } from "effect"
const some = Option.some(42)
const none = Option.none()
const fromNull = Option.fromNullable(maybeNull)
const result = Option.match(option, {
onNone: () => "No value",
onSome: (value) => `Got: ${value}`
})
const value = Option.getOrElse(option, () => defaultValue)
const doubled = Option.map(option, (n) => n * 2)
const chained = Option.flatMap(option, (n) =>
n > 0 ? Option.some(n) : Option.none()
)
const positive = Option.filter(option, (n) => n > 0)
Option with Effect
const program = Effect.gen(function* () {
const maybeUser = yield* findUser(id)
// Convert Option to Effect
const user = yield* Option.match(maybeUser, {
onNone: () => Effect.fail(new UserNotFound()),
onSome: Effect.succeed
})
// Or use Effect.fromOption
const user = yield* maybeUser.pipe(
Effect.fromOption,
Effect.mapError(() => new UserNotFound())
)
})
Either
Represents a value that is either Left (failure) or Right (success):
import { Either } from "effect"
const right = Either.right(42)
const left = Either.left("error")
const result = Either.match(either, {
onLeft: (error) => `Error: ${error}`,
onRight: (value) => `Success: ${value}`
})
const doubled = Either.map(either, (n) => n * 2)
const mapped = Either.mapLeft(either, (e) => new Error(e))
const both = Either.mapBoth(either, {
onLeft: (e) => new Error(e),
onRight: (n) => n * 2
})
const chained = Either.flatMap(either, (n) =>
n > 0 ? Either.right(n) : Either.left("negative")
)
const value = Either.getOrThrow(either)
Cause
Complete failure information for an Effect:
import { Cause } from "effect"
Cause.fail(error)
Cause.die(defect)
Cause.interrupt(id)
Cause.empty
Cause.sequential(c1, c2)
Cause.parallel(c1, c2)
Cause.isFailure(cause)
Cause.isDie(cause)
Cause.isInterrupt(cause)
const failures = Cause.failures(cause)
const defects = Cause.defects(cause)
const message = Cause.pretty(cause)
Exit
The result of running an Effect:
import { Exit } from "effect"
Exit.succeed(value)
Exit.fail(cause)
const result = Exit.match(exit, {
onFailure: (cause) => `Failed: ${Cause.pretty(cause)}`,
onSuccess: (value) => `Succeeded: ${value}`
})
Exit.isSuccess(exit)
Exit.isFailure(exit)
const value = Exit.getOrElse(exit, () => defaultValue)
const mapped = Exit.map(exit, (a) => a * 2)
Data - Value Equality
Create classes with structural equality:
import { Data, Schema } from "effect"
// Tagged class
class Person extends Data.Class<{
readonly name: string
readonly age: number
}> {}
const alice1 = new Person({ name: "Alice", age: 30 })
const alice2 = new Person({ name: "Alice", age: 30 })
alice1 === alice2 // false (reference)
Equal.equals(alice1, alice2) // true (structural)
// Tagged errors (used with Effect.fail)
// Use Schema.TaggedError for domain errors - works with Schema.is(), catchTag, and Match.tag
class UserNotFound extends Schema.TaggedError<UserNotFound>()(
"UserNotFound",
{ userId: Schema.String }
) {}
// Tagged enum
type Shape = Data.TaggedEnum<{
Circle: { radius: number }
Rectangle: { width: number; height: number }
}>
const { Circle, Rectangle } = Data.taggedEnum<Shape>()
const circle = Circle({ radius: 10 })
const rect = Rectangle({ width: 5, height: 3 })
Chunk
Immutable indexed sequence optimized for Effect:
import { Chunk } from "effect"
const chunk = Chunk.make(1, 2, 3, 4, 5)
const fromArray = Chunk.fromIterable([1, 2, 3])
const empty = Chunk.empty<number>()
const head = Chunk.head(chunk)
const tail = Chunk.tail(chunk)
const take = Chunk.take(chunk, 2)
const drop = Chunk.drop(chunk, 2)
const doubled = Chunk.map(chunk, (n) => n * 2)
const filtered = Chunk.filter(chunk, (n) => n > 2)
const sum = Chunk.reduce(chunk, 0, (acc, n) => acc + n)
const array = Chunk.toArray(chunk)
const readonlyArray = Chunk.toReadonlyArray(chunk)
Duration
Represent time spans:
import { Duration } from "effect"
const ms = Duration.millis(100)
const secs = Duration.seconds(5)
const mins = Duration.minutes(10)
const hours = Duration.hours(2)
const days = Duration.days(1)
const fromString = Duration.decode("5 seconds")
const total = Duration.sum(duration1, duration2)
const remaining = Duration.subtract(total, elapsed)
Duration.greaterThan(a, b)
Duration.lessThanOrEqualTo(a, b)
const milliseconds = Duration.toMillis(duration)
const seconds = Duration.toSeconds(duration)
DateTime
Date and time handling:
import { DateTime } from "effect"
const now = DateTime.now
const fromDate = DateTime.fromDate(new Date())
const specific = DateTime.make({
year: 2024,
month: 1,
day: 15,
hours: 10,
minutes: 30
})
const tomorrow = DateTime.add(now, { days: 1 })
const lastWeek = DateTime.subtract(now, { weeks: 1 })
const formatted = DateTime.format(now, "yyyy-MM-dd")
const utc = DateTime.setZone(now, "UTC")
const local = DateTime.setZone(now, DateTime.zoneLocal)
HashMap & HashSet
Immutable hash-based collections:
import { HashMap, HashSet } from "effect"
const map = HashMap.make(
["a", 1],
["b", 2],
["c", 3]
)
const value = HashMap.get(map, "a")
const updated = HashMap.set(map, "d", 4)
const removed = HashMap.remove(map, "a")
const set = HashSet.make(1, 2, 3, 4, 5)
const has = HashSet.has(set, 3)
const added = HashSet.add(set, 6)
const removed = HashSet.remove(set, 1)
const union = HashSet.union(set1, set2)
const intersection = HashSet.intersection(set1, set2)
Redacted
Protect sensitive values from logging:
import { Redacted } from "effect"
const apiKey = Redacted.make("sk-secret-key-123")
console.log(apiKey)
console.log(`Key: ${apiKey}`)
const actual = Redacted.value(apiKey)
Best Practices
- Use Option for nullable values - Explicit handling required
- Use Either for validation - Accumulate errors
- Use Schema.TaggedError for Effect errors - Enables catchTag and Schema.is()
- Use Chunk in streaming - Optimized for Effect operations
- Use Redacted for secrets - Prevents accidental exposure
- Use Duration for time - Type-safe time operations
Additional Resources
For comprehensive data type documentation, consult ${CLAUDE_PLUGIN_ROOT}/references/llms-full.txt.
Search for these sections:
- "Option" for optional values
- "Either" for success/failure
- "Cause" for error details
- "Exit" for execution results
- "Data" for value equality
- "Chunk" for sequences
- "DateTime" for date handling
GitHub リポジトリ
関連スキル
content-collections
メタThis skill provides a production-tested setup for Content Collections, a TypeScript-first tool that transforms Markdown/MDX files into type-safe data collections with Zod validation. Use it when building blogs, documentation sites, or content-heavy Vite + React applications to ensure type safety and automatic content validation. It covers everything from Vite plugin configuration and MDX compilation to deployment optimization and schema validation.
creating-opencode-plugins
メタThis skill provides the structure and API specifications for creating OpenCode plugins that hook into 25+ event types like commands, files, and LSP operations. It offers implementation patterns for JavaScript/TypeScript modules that intercept and extend the AI assistant's lifecycle. Use it when you need to build event-driven plugins for monitoring, custom handling, or extending OpenCode's capabilities.
polymarket
メタThis skill enables developers to build applications with the Polymarket prediction markets platform, including API integration for trading and market data. It also provides real-time data streaming via WebSocket to monitor live trades and market activity. Use it for implementing trading strategies or creating tools that process live market updates.
langchain
メタLangChain is a framework for building LLM applications using agents, chains, and RAG pipelines. It supports multiple LLM providers, offers 500+ integrations, and includes features like tool calling and memory management. Use it for rapid prototyping and deploying production systems like chatbots, autonomous agents, and question-answering services.
