gitlab-ci-patterns
について
このスキルは、マルチステージワークフロー、キャッシュ、分散ランナーを備えたGitLab CI/CDパイプラインの構築と最適化を開発者が行えるように支援します。自動化テスト、ビルド、デプロイ戦略を含む、スケーラブルな自動化のためのパターンを提供します。GitLabベースのCI/CDの導入や改善、ランナーの設定、GitOpsワークフローの構築を行う際にご利用ください。
クイックインストール
Claude Code
推奨/plugin add https://github.com/lifangda/claude-pluginsgit clone https://github.com/lifangda/claude-plugins.git ~/.claude/skills/gitlab-ci-patternsこのコマンドをClaude Codeにコピー&ペーストしてスキルをインストールします
ドキュメント
GitLab CI Patterns
Comprehensive GitLab CI/CD pipeline patterns for automated testing, building, and deployment.
Purpose
Create efficient GitLab CI pipelines with proper stage organization, caching, and deployment strategies.
When to Use
- Automate GitLab-based CI/CD
- Implement multi-stage pipelines
- Configure GitLab Runners
- Deploy to Kubernetes from GitLab
- Implement GitOps workflows
Basic Pipeline Structure
stages:
- build
- test
- deploy
variables:
DOCKER_DRIVER: overlay2
DOCKER_TLS_CERTDIR: "/certs"
build:
stage: build
image: node:20
script:
- npm ci
- npm run build
artifacts:
paths:
- dist/
expire_in: 1 hour
cache:
key: ${CI_COMMIT_REF_SLUG}
paths:
- node_modules/
test:
stage: test
image: node:20
script:
- npm ci
- npm run lint
- npm test
coverage: '/Lines\s*:\s*(\d+\.\d+)%/'
artifacts:
reports:
coverage_report:
coverage_format: cobertura
path: coverage/cobertura-coverage.xml
deploy:
stage: deploy
image: bitnami/kubectl:latest
script:
- kubectl apply -f k8s/
- kubectl rollout status deployment/my-app
only:
- main
environment:
name: production
url: https://app.example.com
Docker Build and Push
build-docker:
stage: build
image: docker:24
services:
- docker:24-dind
before_script:
- docker login -u $CI_REGISTRY_USER -p $CI_REGISTRY_PASSWORD $CI_REGISTRY
script:
- docker build -t $CI_REGISTRY_IMAGE:$CI_COMMIT_SHA .
- docker build -t $CI_REGISTRY_IMAGE:latest .
- docker push $CI_REGISTRY_IMAGE:$CI_COMMIT_SHA
- docker push $CI_REGISTRY_IMAGE:latest
only:
- main
- tags
Multi-Environment Deployment
.deploy_template: &deploy_template
image: bitnami/kubectl:latest
before_script:
- kubectl config set-cluster k8s --server="$KUBE_URL" --insecure-skip-tls-verify=true
- kubectl config set-credentials admin --token="$KUBE_TOKEN"
- kubectl config set-context default --cluster=k8s --user=admin
- kubectl config use-context default
deploy:staging:
<<: *deploy_template
stage: deploy
script:
- kubectl apply -f k8s/ -n staging
- kubectl rollout status deployment/my-app -n staging
environment:
name: staging
url: https://staging.example.com
only:
- develop
deploy:production:
<<: *deploy_template
stage: deploy
script:
- kubectl apply -f k8s/ -n production
- kubectl rollout status deployment/my-app -n production
environment:
name: production
url: https://app.example.com
when: manual
only:
- main
Terraform Pipeline
stages:
- validate
- plan
- apply
variables:
TF_ROOT: ${CI_PROJECT_DIR}/terraform
TF_VERSION: "1.6.0"
before_script:
- cd ${TF_ROOT}
- terraform --version
validate:
stage: validate
image: hashicorp/terraform:${TF_VERSION}
script:
- terraform init -backend=false
- terraform validate
- terraform fmt -check
plan:
stage: plan
image: hashicorp/terraform:${TF_VERSION}
script:
- terraform init
- terraform plan -out=tfplan
artifacts:
paths:
- ${TF_ROOT}/tfplan
expire_in: 1 day
apply:
stage: apply
image: hashicorp/terraform:${TF_VERSION}
script:
- terraform init
- terraform apply -auto-approve tfplan
dependencies:
- plan
when: manual
only:
- main
Security Scanning
include:
- template: Security/SAST.gitlab-ci.yml
- template: Security/Dependency-Scanning.gitlab-ci.yml
- template: Security/Container-Scanning.gitlab-ci.yml
trivy-scan:
stage: test
image: aquasec/trivy:latest
script:
- trivy image --exit-code 1 --severity HIGH,CRITICAL $CI_REGISTRY_IMAGE:$CI_COMMIT_SHA
allow_failure: true
Caching Strategies
# Cache node_modules
build:
cache:
key: ${CI_COMMIT_REF_SLUG}
paths:
- node_modules/
policy: pull-push
# Global cache
cache:
key: ${CI_COMMIT_REF_SLUG}
paths:
- .cache/
- vendor/
# Separate cache per job
job1:
cache:
key: job1-cache
paths:
- build/
job2:
cache:
key: job2-cache
paths:
- dist/
Dynamic Child Pipelines
generate-pipeline:
stage: build
script:
- python generate_pipeline.py > child-pipeline.yml
artifacts:
paths:
- child-pipeline.yml
trigger-child:
stage: deploy
trigger:
include:
- artifact: child-pipeline.yml
job: generate-pipeline
strategy: depend
Reference Files
assets/gitlab-ci.yml.template- Complete pipeline templatereferences/pipeline-stages.md- Stage organization patterns
Best Practices
- Use specific image tags (node:20, not node:latest)
- Cache dependencies appropriately
- Use artifacts for build outputs
- Implement manual gates for production
- Use environments for deployment tracking
- Enable merge request pipelines
- Use pipeline schedules for recurring jobs
- Implement security scanning
- Use CI/CD variables for secrets
- Monitor pipeline performance
Related Skills
github-actions-templates- For GitHub Actionsdeployment-pipeline-design- For architecturesecrets-management- For secrets handling
GitHub リポジトリ
関連スキル
content-collections
メタThis skill provides a production-tested setup for Content Collections, a TypeScript-first tool that transforms Markdown/MDX files into type-safe data collections with Zod validation. Use it when building blogs, documentation sites, or content-heavy Vite + React applications to ensure type safety and automatic content validation. It covers everything from Vite plugin configuration and MDX compilation to deployment optimization and schema validation.
creating-opencode-plugins
メタThis skill provides the structure and API specifications for creating OpenCode plugins that hook into 25+ event types like commands, files, and LSP operations. It offers implementation patterns for JavaScript/TypeScript modules that intercept and extend the AI assistant's lifecycle. Use it when you need to build event-driven plugins for monitoring, custom handling, or extending OpenCode's capabilities.
evaluating-llms-harness
テストThis Claude Skill runs the lm-evaluation-harness to benchmark LLMs across 60+ standardized academic tasks like MMLU and GSM8K. It's designed for developers to compare model quality, track training progress, or report academic results. The tool supports various backends including HuggingFace and vLLM models.
sglang
メタSGLang is a high-performance LLM serving framework that specializes in fast, structured generation for JSON, regex, and agentic workflows using its RadixAttention prefix caching. It delivers significantly faster inference, especially for tasks with repeated prefixes, making it ideal for complex, structured outputs and multi-turn conversations. Choose SGLang over alternatives like vLLM when you need constrained decoding or are building applications with extensive prefix sharing.
