MCP HubMCP Hub
スキル一覧に戻る

gitlab-ci-patterns

lifangda
更新日 Today
388 閲覧
11
11
GitHubで表示
メタtestingautomationdesign

について

このスキルは、マルチステージワークフロー、キャッシュ、分散ランナーを備えたGitLab CI/CDパイプラインの構築と最適化を開発者が行えるように支援します。自動化テスト、ビルド、デプロイ戦略を含む、スケーラブルな自動化のためのパターンを提供します。GitLabベースのCI/CDの導入や改善、ランナーの設定、GitOpsワークフローの構築を行う際にご利用ください。

クイックインストール

Claude Code

推奨
プラグインコマンド推奨
/plugin add https://github.com/lifangda/claude-plugins
Git クローン代替
git clone https://github.com/lifangda/claude-plugins.git ~/.claude/skills/gitlab-ci-patterns

このコマンドをClaude Codeにコピー&ペーストしてスキルをインストールします

ドキュメント

GitLab CI Patterns

Comprehensive GitLab CI/CD pipeline patterns for automated testing, building, and deployment.

Purpose

Create efficient GitLab CI pipelines with proper stage organization, caching, and deployment strategies.

When to Use

  • Automate GitLab-based CI/CD
  • Implement multi-stage pipelines
  • Configure GitLab Runners
  • Deploy to Kubernetes from GitLab
  • Implement GitOps workflows

Basic Pipeline Structure

stages:
  - build
  - test
  - deploy

variables:
  DOCKER_DRIVER: overlay2
  DOCKER_TLS_CERTDIR: "/certs"

build:
  stage: build
  image: node:20
  script:
    - npm ci
    - npm run build
  artifacts:
    paths:
      - dist/
    expire_in: 1 hour
  cache:
    key: ${CI_COMMIT_REF_SLUG}
    paths:
      - node_modules/

test:
  stage: test
  image: node:20
  script:
    - npm ci
    - npm run lint
    - npm test
  coverage: '/Lines\s*:\s*(\d+\.\d+)%/'
  artifacts:
    reports:
      coverage_report:
        coverage_format: cobertura
        path: coverage/cobertura-coverage.xml

deploy:
  stage: deploy
  image: bitnami/kubectl:latest
  script:
    - kubectl apply -f k8s/
    - kubectl rollout status deployment/my-app
  only:
    - main
  environment:
    name: production
    url: https://app.example.com

Docker Build and Push

build-docker:
  stage: build
  image: docker:24
  services:
    - docker:24-dind
  before_script:
    - docker login -u $CI_REGISTRY_USER -p $CI_REGISTRY_PASSWORD $CI_REGISTRY
  script:
    - docker build -t $CI_REGISTRY_IMAGE:$CI_COMMIT_SHA .
    - docker build -t $CI_REGISTRY_IMAGE:latest .
    - docker push $CI_REGISTRY_IMAGE:$CI_COMMIT_SHA
    - docker push $CI_REGISTRY_IMAGE:latest
  only:
    - main
    - tags

Multi-Environment Deployment

.deploy_template: &deploy_template
  image: bitnami/kubectl:latest
  before_script:
    - kubectl config set-cluster k8s --server="$KUBE_URL" --insecure-skip-tls-verify=true
    - kubectl config set-credentials admin --token="$KUBE_TOKEN"
    - kubectl config set-context default --cluster=k8s --user=admin
    - kubectl config use-context default

deploy:staging:
  <<: *deploy_template
  stage: deploy
  script:
    - kubectl apply -f k8s/ -n staging
    - kubectl rollout status deployment/my-app -n staging
  environment:
    name: staging
    url: https://staging.example.com
  only:
    - develop

deploy:production:
  <<: *deploy_template
  stage: deploy
  script:
    - kubectl apply -f k8s/ -n production
    - kubectl rollout status deployment/my-app -n production
  environment:
    name: production
    url: https://app.example.com
  when: manual
  only:
    - main

Terraform Pipeline

stages:
  - validate
  - plan
  - apply

variables:
  TF_ROOT: ${CI_PROJECT_DIR}/terraform
  TF_VERSION: "1.6.0"

before_script:
  - cd ${TF_ROOT}
  - terraform --version

validate:
  stage: validate
  image: hashicorp/terraform:${TF_VERSION}
  script:
    - terraform init -backend=false
    - terraform validate
    - terraform fmt -check

plan:
  stage: plan
  image: hashicorp/terraform:${TF_VERSION}
  script:
    - terraform init
    - terraform plan -out=tfplan
  artifacts:
    paths:
      - ${TF_ROOT}/tfplan
    expire_in: 1 day

apply:
  stage: apply
  image: hashicorp/terraform:${TF_VERSION}
  script:
    - terraform init
    - terraform apply -auto-approve tfplan
  dependencies:
    - plan
  when: manual
  only:
    - main

Security Scanning

include:
  - template: Security/SAST.gitlab-ci.yml
  - template: Security/Dependency-Scanning.gitlab-ci.yml
  - template: Security/Container-Scanning.gitlab-ci.yml

trivy-scan:
  stage: test
  image: aquasec/trivy:latest
  script:
    - trivy image --exit-code 1 --severity HIGH,CRITICAL $CI_REGISTRY_IMAGE:$CI_COMMIT_SHA
  allow_failure: true

Caching Strategies

# Cache node_modules
build:
  cache:
    key: ${CI_COMMIT_REF_SLUG}
    paths:
      - node_modules/
    policy: pull-push

# Global cache
cache:
  key: ${CI_COMMIT_REF_SLUG}
  paths:
    - .cache/
    - vendor/

# Separate cache per job
job1:
  cache:
    key: job1-cache
    paths:
      - build/

job2:
  cache:
    key: job2-cache
    paths:
      - dist/

Dynamic Child Pipelines

generate-pipeline:
  stage: build
  script:
    - python generate_pipeline.py > child-pipeline.yml
  artifacts:
    paths:
      - child-pipeline.yml

trigger-child:
  stage: deploy
  trigger:
    include:
      - artifact: child-pipeline.yml
        job: generate-pipeline
    strategy: depend

Reference Files

  • assets/gitlab-ci.yml.template - Complete pipeline template
  • references/pipeline-stages.md - Stage organization patterns

Best Practices

  1. Use specific image tags (node:20, not node:latest)
  2. Cache dependencies appropriately
  3. Use artifacts for build outputs
  4. Implement manual gates for production
  5. Use environments for deployment tracking
  6. Enable merge request pipelines
  7. Use pipeline schedules for recurring jobs
  8. Implement security scanning
  9. Use CI/CD variables for secrets
  10. Monitor pipeline performance

Related Skills

  • github-actions-templates - For GitHub Actions
  • deployment-pipeline-design - For architecture
  • secrets-management - For secrets handling

GitHub リポジトリ

lifangda/claude-plugins
パス: cli-tool/skills-library/cicd-automation/gitlab-ci-patterns

関連スキル

content-collections

メタ

This skill provides a production-tested setup for Content Collections, a TypeScript-first tool that transforms Markdown/MDX files into type-safe data collections with Zod validation. Use it when building blogs, documentation sites, or content-heavy Vite + React applications to ensure type safety and automatic content validation. It covers everything from Vite plugin configuration and MDX compilation to deployment optimization and schema validation.

スキルを見る

creating-opencode-plugins

メタ

This skill provides the structure and API specifications for creating OpenCode plugins that hook into 25+ event types like commands, files, and LSP operations. It offers implementation patterns for JavaScript/TypeScript modules that intercept and extend the AI assistant's lifecycle. Use it when you need to build event-driven plugins for monitoring, custom handling, or extending OpenCode's capabilities.

スキルを見る

evaluating-llms-harness

テスト

This Claude Skill runs the lm-evaluation-harness to benchmark LLMs across 60+ standardized academic tasks like MMLU and GSM8K. It's designed for developers to compare model quality, track training progress, or report academic results. The tool supports various backends including HuggingFace and vLLM models.

スキルを見る

sglang

メタ

SGLang is a high-performance LLM serving framework that specializes in fast, structured generation for JSON, regex, and agentic workflows using its RadixAttention prefix caching. It delivers significantly faster inference, especially for tasks with repeated prefixes, making it ideal for complex, structured outputs and multi-turn conversations. Choose SGLang over alternatives like vLLM when you need constrained decoding or are building applications with extensive prefix sharing.

スキルを見る