MCP HubMCP Hub
スキル一覧に戻る

internal-comms

OneWave-AI
更新日 2 days ago
37 閲覧
11
4
11
GitHubで表示
メタai

について

internal-commsスキルは、進捗レポート、リーダーシップアップデート、インシデントレポートなど、様々な社内コミュニケーションを生成するための構造化されたテンプレートとガイドラインを提供します。開発者は、Claudeに何らかの形式の社内コミュニケーションの草案作成を依頼する際は、常にこのスキルを使用する必要があります。本スキルは、要求されたコミュニケーションタイプに応じて適切なガイドラインファイルを読み込むことで、コンテンツが特定の、優先される会社のフォーマットに従うことを保証します。

クイックインストール

Claude Code

推奨
プラグインコマンド推奨
/plugin add https://github.com/OneWave-AI/claude-skills
Git クローン代替
git clone https://github.com/OneWave-AI/claude-skills.git ~/.claude/skills/internal-comms

このコマンドをClaude Codeにコピー&ペーストしてスキルをインストールします

ドキュメント

When to use this skill

To write internal communications, use this skill for:

  • 3P updates (Progress, Plans, Problems)
  • Company newsletters
  • FAQ responses
  • Status reports
  • Leadership updates
  • Project updates
  • Incident reports

How to use this skill

To write any internal communication:

  1. Identify the communication type from the request
  2. Load the appropriate guideline file from the examples/ directory:
    • examples/3p-updates.md - For Progress/Plans/Problems team updates
    • examples/company-newsletter.md - For company-wide newsletters
    • examples/faq-answers.md - For answering frequently asked questions
    • examples/general-comms.md - For anything else that doesn't explicitly match one of the above
  3. Follow the specific instructions in that file for formatting, tone, and content gathering

If the communication type doesn't match any existing guideline, ask for clarification or more context about the desired format.

Keywords

3P updates, company newsletter, company comms, weekly update, faqs, common questions, updates, internal comms

GitHub リポジトリ

OneWave-AI/claude-skills
パス: official-anthropic-skills/internal-comms

関連スキル

evaluating-llms-harness

テスト

This Claude Skill runs the lm-evaluation-harness to benchmark LLMs across 60+ standardized academic tasks like MMLU and GSM8K. It's designed for developers to compare model quality, track training progress, or report academic results. The tool supports various backends including HuggingFace and vLLM models.

スキルを見る

sglang

メタ

SGLang is a high-performance LLM serving framework that specializes in fast, structured generation for JSON, regex, and agentic workflows using its RadixAttention prefix caching. It delivers significantly faster inference, especially for tasks with repeated prefixes, making it ideal for complex, structured outputs and multi-turn conversations. Choose SGLang over alternatives like vLLM when you need constrained decoding or are building applications with extensive prefix sharing.

スキルを見る

cloudflare-turnstile

メタ

This skill provides comprehensive guidance for implementing Cloudflare Turnstile as a CAPTCHA-alternative bot protection system. It covers integration for forms, login pages, API endpoints, and frameworks like React/Next.js/Hono, while handling invisible challenges that maintain user experience. Use it when migrating from reCAPTCHA, debugging error codes, or implementing token validation and E2E tests.

スキルを見る

langchain

メタ

LangChain is a framework for building LLM applications using agents, chains, and RAG pipelines. It supports multiple LLM providers, offers 500+ integrations, and includes features like tool calling and memory management. Use it for rapid prototyping and deploying production systems like chatbots, autonomous agents, and question-answering services.

スキルを見る