correlation-explorer
について
相関関係探索スキルは、ピアソン相関やスピアマン相関などの手法を用いて、データセット内の変数間の関係を分析・可視化します。相関行列やヒートマップを生成し、強い相関を持つ変数のペアを特定することで、データ探索や特徴量選択を支援します。開発者はこのスキルを用いて、カラム間の関係を迅速に理解し、統計的な相関関係に基づいてデータセットをフィルタリングすることができます。
クイックインストール
Claude Code
推奨/plugin add https://github.com/majiayu000/claude-skill-registrygit clone https://github.com/majiayu000/claude-skill-registry.git ~/.claude/skills/correlation-explorerこのコマンドをClaude Codeにコピー&ペーストしてスキルをインストールします
ドキュメント
Correlation Explorer
Analyze correlations between variables in CSV/Excel datasets.
Features
- Correlation Matrix: Compute all pairwise correlations
- Heatmap Visualization: Color-coded correlation display
- Significance Testing: P-values for correlations
- Multiple Methods: Pearson, Spearman, Kendall
- Strong Correlations: Find highly correlated pairs
- Target Analysis: Correlations with specific variable
Quick Start
from correlation_explorer import CorrelationExplorer
explorer = CorrelationExplorer()
# Load and analyze
explorer.load_csv("sales_data.csv")
matrix = explorer.correlation_matrix()
# Find strong correlations
strong = explorer.find_strong_correlations(threshold=0.7)
print(strong)
# Generate heatmap
explorer.plot_heatmap("correlation_heatmap.png")
CLI Usage
# Compute correlation matrix
python correlation_explorer.py --input data.csv --output correlations.csv
# Generate heatmap
python correlation_explorer.py --input data.csv --heatmap heatmap.png
# Find strong correlations
python correlation_explorer.py --input data.csv --strong --threshold 0.7
# Correlations with target variable
python correlation_explorer.py --input data.csv --target sales
# Use Spearman correlation
python correlation_explorer.py --input data.csv --method spearman
# Include p-values
python correlation_explorer.py --input data.csv --pvalues
API Reference
CorrelationExplorer Class
class CorrelationExplorer:
def __init__(self)
# Data loading
def load_csv(self, filepath: str, **kwargs) -> 'CorrelationExplorer'
def load_dataframe(self, df: pd.DataFrame) -> 'CorrelationExplorer'
# Analysis
def correlation_matrix(self, method: str = "pearson") -> pd.DataFrame
def correlation_with_pvalues(self, method: str = "pearson") -> tuple
def correlate_with_target(self, target: str, method: str = "pearson") -> pd.Series
# Discovery
def find_strong_correlations(self, threshold: float = 0.7) -> list
def find_weak_correlations(self, threshold: float = 0.3) -> list
# Visualization
def plot_heatmap(self, output: str, **kwargs) -> str
def plot_scatter(self, var1: str, var2: str, output: str) -> str
# Export
def to_csv(self, output: str) -> str
def to_json(self, output: str) -> str
Correlation Methods
| Method | Best For |
|---|---|
pearson | Linear relationships, normal data |
spearman | Non-linear, ordinal data |
kendall | Small samples, ordinal data |
# Pearson (default) - parametric
matrix = explorer.correlation_matrix(method="pearson")
# Spearman - rank-based, non-parametric
matrix = explorer.correlation_matrix(method="spearman")
# Kendall - robust to outliers
matrix = explorer.correlation_matrix(method="kendall")
Output Format
Correlation Matrix
sales marketing customers
sales 1.000 0.854 0.723
marketing 0.854 1.000 0.612
customers 0.723 0.612 1.000
Strong Correlations
[
{"var1": "sales", "var2": "marketing", "correlation": 0.854, "abs_corr": 0.854},
{"var1": "sales", "var2": "customers", "correlation": 0.723, "abs_corr": 0.723}
]
With P-Values
{
"correlations": DataFrame,
"pvalues": DataFrame,
"significant": [...], # p < 0.05
}
Example Workflows
Feature Selection
explorer = CorrelationExplorer()
explorer.load_csv("features.csv")
# Find features correlated with target
target_corr = explorer.correlate_with_target("target")
important_features = target_corr[abs(target_corr) > 0.3].index.tolist()
print(f"Important features: {important_features}")
# Find multicollinear features (to potentially drop)
strong = explorer.find_strong_correlations(threshold=0.9)
print("Highly correlated pairs (consider dropping one):")
for pair in strong:
print(f" {pair['var1']} <-> {pair['var2']}: {pair['correlation']:.3f}")
Sales Analysis
explorer = CorrelationExplorer()
explorer.load_csv("sales_data.csv")
# What drives sales?
sales_corr = explorer.correlate_with_target("revenue")
print("Factors correlated with revenue:")
for var, corr in sales_corr.sort_values(ascending=False).items():
if var != "revenue":
print(f" {var}: {corr:.3f}")
# Visualize
explorer.plot_heatmap("sales_correlations.png")
Data Exploration
explorer = CorrelationExplorer()
explorer.load_csv("dataset.csv")
# Get full picture
corr, pvals = explorer.correlation_with_pvalues()
# Find all significant correlations
significant = []
for i in range(len(corr.columns)):
for j in range(i+1, len(corr.columns)):
if pvals.iloc[i, j] < 0.05:
significant.append({
'var1': corr.columns[i],
'var2': corr.columns[j],
'r': corr.iloc[i, j],
'p': pvals.iloc[i, j]
})
Heatmap Options
explorer.plot_heatmap(
output="heatmap.png",
cmap="coolwarm", # Color scheme
annot=True, # Show values
figsize=(12, 10), # Figure size
vmin=-1, vmax=1, # Color scale
title="Correlation Matrix"
)
Dependencies
- pandas>=2.0.0
- numpy>=1.24.0
- scipy>=1.10.0
- matplotlib>=3.7.0
- seaborn>=0.12.0
GitHub リポジトリ
関連スキル
content-collections
メタThis skill provides a production-tested setup for Content Collections, a TypeScript-first tool that transforms Markdown/MDX files into type-safe data collections with Zod validation. Use it when building blogs, documentation sites, or content-heavy Vite + React applications to ensure type safety and automatic content validation. It covers everything from Vite plugin configuration and MDX compilation to deployment optimization and schema validation.
creating-opencode-plugins
メタThis skill provides the structure and API specifications for creating OpenCode plugins that hook into 25+ event types like commands, files, and LSP operations. It offers implementation patterns for JavaScript/TypeScript modules that intercept and extend the AI assistant's lifecycle. Use it when you need to build event-driven plugins for monitoring, custom handling, or extending OpenCode's capabilities.
polymarket
メタThis skill enables developers to build applications with the Polymarket prediction markets platform, including API integration for trading and market data. It also provides real-time data streaming via WebSocket to monitor live trades and market activity. Use it for implementing trading strategies or creating tools that process live market updates.
langchain
メタLangChain is a framework for building LLM applications using agents, chains, and RAG pipelines. It supports multiple LLM providers, offers 500+ integrations, and includes features like tool calling and memory management. Use it for rapid prototyping and deploying production systems like chatbots, autonomous agents, and question-answering services.
