MCP HubMCP Hub
スキル一覧に戻る

correlation-explorer

majiayu000
更新日 2 days ago
21 閲覧
58
9
58
GitHubで表示
デザインdesigndata

について

相関関係探索スキルは、ピアソン相関やスピアマン相関などの手法を用いて、データセット内の変数間の関係を分析・可視化します。相関行列やヒートマップを生成し、強い相関を持つ変数のペアを特定することで、データ探索や特徴量選択を支援します。開発者はこのスキルを用いて、カラム間の関係を迅速に理解し、統計的な相関関係に基づいてデータセットをフィルタリングすることができます。

クイックインストール

Claude Code

推奨
プラグインコマンド推奨
/plugin add https://github.com/majiayu000/claude-skill-registry
Git クローン代替
git clone https://github.com/majiayu000/claude-skill-registry.git ~/.claude/skills/correlation-explorer

このコマンドをClaude Codeにコピー&ペーストしてスキルをインストールします

ドキュメント

Correlation Explorer

Analyze correlations between variables in CSV/Excel datasets.

Features

  • Correlation Matrix: Compute all pairwise correlations
  • Heatmap Visualization: Color-coded correlation display
  • Significance Testing: P-values for correlations
  • Multiple Methods: Pearson, Spearman, Kendall
  • Strong Correlations: Find highly correlated pairs
  • Target Analysis: Correlations with specific variable

Quick Start

from correlation_explorer import CorrelationExplorer

explorer = CorrelationExplorer()

# Load and analyze
explorer.load_csv("sales_data.csv")
matrix = explorer.correlation_matrix()

# Find strong correlations
strong = explorer.find_strong_correlations(threshold=0.7)
print(strong)

# Generate heatmap
explorer.plot_heatmap("correlation_heatmap.png")

CLI Usage

# Compute correlation matrix
python correlation_explorer.py --input data.csv --output correlations.csv

# Generate heatmap
python correlation_explorer.py --input data.csv --heatmap heatmap.png

# Find strong correlations
python correlation_explorer.py --input data.csv --strong --threshold 0.7

# Correlations with target variable
python correlation_explorer.py --input data.csv --target sales

# Use Spearman correlation
python correlation_explorer.py --input data.csv --method spearman

# Include p-values
python correlation_explorer.py --input data.csv --pvalues

API Reference

CorrelationExplorer Class

class CorrelationExplorer:
    def __init__(self)

    # Data loading
    def load_csv(self, filepath: str, **kwargs) -> 'CorrelationExplorer'
    def load_dataframe(self, df: pd.DataFrame) -> 'CorrelationExplorer'

    # Analysis
    def correlation_matrix(self, method: str = "pearson") -> pd.DataFrame
    def correlation_with_pvalues(self, method: str = "pearson") -> tuple
    def correlate_with_target(self, target: str, method: str = "pearson") -> pd.Series

    # Discovery
    def find_strong_correlations(self, threshold: float = 0.7) -> list
    def find_weak_correlations(self, threshold: float = 0.3) -> list

    # Visualization
    def plot_heatmap(self, output: str, **kwargs) -> str
    def plot_scatter(self, var1: str, var2: str, output: str) -> str

    # Export
    def to_csv(self, output: str) -> str
    def to_json(self, output: str) -> str

Correlation Methods

MethodBest For
pearsonLinear relationships, normal data
spearmanNon-linear, ordinal data
kendallSmall samples, ordinal data
# Pearson (default) - parametric
matrix = explorer.correlation_matrix(method="pearson")

# Spearman - rank-based, non-parametric
matrix = explorer.correlation_matrix(method="spearman")

# Kendall - robust to outliers
matrix = explorer.correlation_matrix(method="kendall")

Output Format

Correlation Matrix

           sales  marketing  customers
sales      1.000      0.854      0.723
marketing  0.854      1.000      0.612
customers  0.723      0.612      1.000

Strong Correlations

[
    {"var1": "sales", "var2": "marketing", "correlation": 0.854, "abs_corr": 0.854},
    {"var1": "sales", "var2": "customers", "correlation": 0.723, "abs_corr": 0.723}
]

With P-Values

{
    "correlations": DataFrame,
    "pvalues": DataFrame,
    "significant": [...],  # p < 0.05
}

Example Workflows

Feature Selection

explorer = CorrelationExplorer()
explorer.load_csv("features.csv")

# Find features correlated with target
target_corr = explorer.correlate_with_target("target")
important_features = target_corr[abs(target_corr) > 0.3].index.tolist()
print(f"Important features: {important_features}")

# Find multicollinear features (to potentially drop)
strong = explorer.find_strong_correlations(threshold=0.9)
print("Highly correlated pairs (consider dropping one):")
for pair in strong:
    print(f"  {pair['var1']} <-> {pair['var2']}: {pair['correlation']:.3f}")

Sales Analysis

explorer = CorrelationExplorer()
explorer.load_csv("sales_data.csv")

# What drives sales?
sales_corr = explorer.correlate_with_target("revenue")
print("Factors correlated with revenue:")
for var, corr in sales_corr.sort_values(ascending=False).items():
    if var != "revenue":
        print(f"  {var}: {corr:.3f}")

# Visualize
explorer.plot_heatmap("sales_correlations.png")

Data Exploration

explorer = CorrelationExplorer()
explorer.load_csv("dataset.csv")

# Get full picture
corr, pvals = explorer.correlation_with_pvalues()

# Find all significant correlations
significant = []
for i in range(len(corr.columns)):
    for j in range(i+1, len(corr.columns)):
        if pvals.iloc[i, j] < 0.05:
            significant.append({
                'var1': corr.columns[i],
                'var2': corr.columns[j],
                'r': corr.iloc[i, j],
                'p': pvals.iloc[i, j]
            })

Heatmap Options

explorer.plot_heatmap(
    output="heatmap.png",
    cmap="coolwarm",      # Color scheme
    annot=True,           # Show values
    figsize=(12, 10),     # Figure size
    vmin=-1, vmax=1,      # Color scale
    title="Correlation Matrix"
)

Dependencies

  • pandas>=2.0.0
  • numpy>=1.24.0
  • scipy>=1.10.0
  • matplotlib>=3.7.0
  • seaborn>=0.12.0

GitHub リポジトリ

majiayu000/claude-skill-registry
パス: skills/correlation-explorer

関連スキル

content-collections

メタ

This skill provides a production-tested setup for Content Collections, a TypeScript-first tool that transforms Markdown/MDX files into type-safe data collections with Zod validation. Use it when building blogs, documentation sites, or content-heavy Vite + React applications to ensure type safety and automatic content validation. It covers everything from Vite plugin configuration and MDX compilation to deployment optimization and schema validation.

スキルを見る

creating-opencode-plugins

メタ

This skill provides the structure and API specifications for creating OpenCode plugins that hook into 25+ event types like commands, files, and LSP operations. It offers implementation patterns for JavaScript/TypeScript modules that intercept and extend the AI assistant's lifecycle. Use it when you need to build event-driven plugins for monitoring, custom handling, or extending OpenCode's capabilities.

スキルを見る

polymarket

メタ

This skill enables developers to build applications with the Polymarket prediction markets platform, including API integration for trading and market data. It also provides real-time data streaming via WebSocket to monitor live trades and market activity. Use it for implementing trading strategies or creating tools that process live market updates.

スキルを見る

langchain

メタ

LangChain is a framework for building LLM applications using agents, chains, and RAG pipelines. It supports multiple LLM providers, offers 500+ integrations, and includes features like tool calling and memory management. Use it for rapid prototyping and deploying production systems like chatbots, autonomous agents, and question-answering services.

スキルを見る