MCP HubMCP Hub
スキル一覧に戻る

patent-search

RobThePCGuy
更新日 Today
110 閲覧
2
2
GitHubで表示
開発apidata

について

このClaudeスキルは、BigQueryを介して7,600万件以上の特許を高速かつ設定不要で世界的に検索できるほか、PatentsView APIを通じて米国特許の詳細メタデータを取得できます。開発者は事前設定済みの認証情報を用いたPythonスクリプトで迅速にテスト可能です。世界的な網羅性が必要な場合はBigQueryを、発明者や引用文献などの豊富な米国特許詳細が必要な場合はPatentsViewをお選びください。

クイックインストール

Claude Code

推奨
プラグインコマンド推奨
/plugin add https://github.com/RobThePCGuy/Claude-Patent-Creator
Git クローン代替
git clone https://github.com/RobThePCGuy/Claude-Patent-Creator.git ~/.claude/skills/patent-search

このコマンドをClaude Codeにコピー&ペーストしてスキルをインストールします

ドキュメント

Patent Search Skill

Two powerful patent search methods:

  1. BigQuery Search (Recommended) - 76M+ worldwide patents, zero local storage
  2. PatentsView API - Detailed US patent metadata (inventors, assignees, classifications, citations)

FOR CLAUDE: All files and dependencies installed.

  • Go directly to Quick Test section
  • Script at: .claude/skills/patent-search/bigquery_search.py
  • Run from skill directory
  • Windows: Use cmd syntax (dir, set, &&)

Quick Test

# Windows
cd ".claude\skills\patent-search"
set GOOGLE_APPLICATION_CREDENTIALS=%APPDATA%\\gcloud\\application_default_credentials.json
python bigquery_search.py search "voice biometric" 5

# Linux/macOS
cd .claude/skills/patent-search
export GOOGLE_APPLICATION_CREDENTIALS="$HOME/.config/gcloud/application_default_credentials.json"
python bigquery_search.py search "voice biometric" 5

Expected: 5 patent results in ~4 seconds

Quick Start

BigQuery Search

# Keyword search (2-3 keywords for best results)
python bigquery_search.py search "voice biometric authentication" 20

# Get specific patent (hyphenated format: US-XXXXXXX-XX)
python bigquery_search.py get US-12424224-B2

# CPC classification search
python bigquery_search.py cpc G10L 15

PatentsView API

Choosing the Right Method

Use BigQuery When:

  • Quick keyword search needed
  • Worldwide patents (not just US)
  • Fast results (3-4 seconds)
  • Zero local storage
  • CPC classification search
  • Budget-conscious (free tier: 1TB/month)

Use PatentsView When:

  • Need detailed US patent metadata
  • Searching by inventor/assignee
  • Citation analysis required
  • Complex boolean queries
  • Exact field matching
  • Patent family analysis

Combined Workflow

  1. Start with BigQuery (broad keyword search)
  2. Identify relevant patents and CPC codes
  3. Switch to PatentsView (detailed metadata/citations)
  4. Export final results

Example:

# Step 1: BigQuery broad search
python bigquery_search.py search "voice biometric authentication" 20

# Step 2: Found CPC G10L17, search more
python bigquery_search.py cpc G10L17 50

# Step 3: Use PatentsView for inventor/assignee analysis

Instructions for Claude

When user requests patent searches:

  1. Understand Goal: Technology, time period, prior art vs competitive analysis, US vs worldwide
  2. Check Dependencies: Verify BigQuery/PatentsView setup
  3. Choose Method: Default BigQuery for broad, PatentsView for detailed
  4. Optimize Queries:
    • BigQuery: 2-3 keywords, simplify if zero results, use CPC codes
    • PatentsView: Verify API key, construct JSON queries, handle pagination
  5. Present Results: Parse JSON, highlight key info, provide Google Patents URLs
  6. Offer Next Steps: Suggest refinements, related classifications, citation analysis

Common Use Cases

Prior Art Search

  1. BigQuery keyword search
  2. Identify CPC codes
  3. BigQuery CPC search
  4. PatentsView citation analysis
  5. Document findings

Competitive Intelligence

  1. PatentsView search by assignee
  2. Filter by date range
  3. Group by CPC
  4. Identify key inventors
  5. Trend report

Technology Landscape

  1. BigQuery CPC search worldwide
  2. Analyze by country/date
  3. Identify patent families
  4. PatentsView US details
  5. Summary report

Freedom to Operate

  1. BigQuery keyword + CPC search
  2. Filter by jurisdiction/active status
  3. PatentsView claim analysis
  4. Review forward citations
  5. Risk assessment

Performance & Coverage

MethodPatentsCoverageSpeedCostStorage
BigQuery76M+Worldwide3-4sFree*0GB
PatentsView9.2MUS only1-3sFree0GB

*Free tier: 1TB queries/month

Quick Reference

BigQuery Commands

python bigquery_search.py search "query" <limit>
python bigquery_search.py get <PATENT-NUMBER>
python bigquery_search.py cpc <CODE> <limit>

Common CPC Codes

CodeTechnology
G10LSpeech analysis/synthesis
G10L15Speech recognition
G10L17Speaker recognition/verification
G06F21Security arrangements
G06NComputing models

Troubleshooting

FOR CLAUDE: Only run diagnostics if Quick Test fails.

ProblemSolution
BigQuery auth failsgcloud auth application-default login
No module google.cloudpip install google-cloud-bigquery db-dtypes
Zero resultsSimplify query (2-3 keywords max)
Patent get failsUse hyphenated format: US-XXXXX-XX
PatentsView 403Set API key environment variable
Rate limit (429)Wait 60 seconds (PatentsView: 45 req/min)

GitHub リポジトリ

RobThePCGuy/Claude-Patent-Creator
パス: skills/patent-search
bigqueryclaude-codeclaude-code-pluginfaissmcp-servermpep

関連スキル

content-collections

メタ

This skill provides a production-tested setup for Content Collections, a TypeScript-first tool that transforms Markdown/MDX files into type-safe data collections with Zod validation. Use it when building blogs, documentation sites, or content-heavy Vite + React applications to ensure type safety and automatic content validation. It covers everything from Vite plugin configuration and MDX compilation to deployment optimization and schema validation.

スキルを見る

creating-opencode-plugins

メタ

This skill provides the structure and API specifications for creating OpenCode plugins that hook into 25+ event types like commands, files, and LSP operations. It offers implementation patterns for JavaScript/TypeScript modules that intercept and extend the AI assistant's lifecycle. Use it when you need to build event-driven plugins for monitoring, custom handling, or extending OpenCode's capabilities.

スキルを見る

evaluating-llms-harness

テスト

This Claude Skill runs the lm-evaluation-harness to benchmark LLMs across 60+ standardized academic tasks like MMLU and GSM8K. It's designed for developers to compare model quality, track training progress, or report academic results. The tool supports various backends including HuggingFace and vLLM models.

スキルを見る

polymarket

メタ

This skill enables developers to build applications with the Polymarket prediction markets platform, including API integration for trading and market data. It also provides real-time data streaming via WebSocket to monitor live trades and market activity. Use it for implementing trading strategies or creating tools that process live market updates.

スキルを見る