MCP HubMCP Hub
スキル一覧に戻る

Excel Analysis

lifangda
更新日 Today
532 閲覧
11
11
GitHubで表示
メタexceldata

について

このスキルは、開発者がExcelファイルを分析し、pandasを使用してデータ操作を行うことを可能にします。.xlsxファイルや表形式データに対して、スプレッドシートの読み込み、ピボットテーブルの作成、グラフの生成、データ分析を実行できます。Claude Code内でExcelファイル、スプレッドシート、または任意の構造化された表形式データを扱う際にご利用ください。

クイックインストール

Claude Code

推奨
プラグインコマンド推奨
/plugin add https://github.com/lifangda/claude-plugins
Git クローン代替
git clone https://github.com/lifangda/claude-plugins.git ~/.claude/skills/Excel Analysis

このコマンドをClaude Codeにコピー&ペーストしてスキルをインストールします

ドキュメント

Excel Analysis

Quick start

Read Excel files with pandas:

import pandas as pd

# Read Excel file
df = pd.read_excel("data.xlsx", sheet_name="Sheet1")

# Display first few rows
print(df.head())

# Basic statistics
print(df.describe())

Reading multiple sheets

Process all sheets in a workbook:

import pandas as pd

# Read all sheets
excel_file = pd.ExcelFile("workbook.xlsx")

for sheet_name in excel_file.sheet_names:
    df = pd.read_excel(excel_file, sheet_name=sheet_name)
    print(f"\n{sheet_name}:")
    print(df.head())

Data analysis

Perform common analysis tasks:

import pandas as pd

df = pd.read_excel("sales.xlsx")

# Group by and aggregate
sales_by_region = df.groupby("region")["sales"].sum()
print(sales_by_region)

# Filter data
high_sales = df[df["sales"] > 10000]

# Calculate metrics
df["profit_margin"] = (df["revenue"] - df["cost"]) / df["revenue"]

# Sort by column
df_sorted = df.sort_values("sales", ascending=False)

Creating Excel files

Write data to Excel with formatting:

import pandas as pd

df = pd.DataFrame({
    "Product": ["A", "B", "C"],
    "Sales": [100, 200, 150],
    "Profit": [20, 40, 30]
})

# Write to Excel
writer = pd.ExcelWriter("output.xlsx", engine="openpyxl")
df.to_excel(writer, sheet_name="Sales", index=False)

# Get worksheet for formatting
worksheet = writer.sheets["Sales"]

# Auto-adjust column widths
for column in worksheet.columns:
    max_length = 0
    column_letter = column[0].column_letter
    for cell in column:
        if len(str(cell.value)) > max_length:
            max_length = len(str(cell.value))
    worksheet.column_dimensions[column_letter].width = max_length + 2

writer.close()

Pivot tables

Create pivot tables programmatically:

import pandas as pd

df = pd.read_excel("sales_data.xlsx")

# Create pivot table
pivot = pd.pivot_table(
    df,
    values="sales",
    index="region",
    columns="product",
    aggfunc="sum",
    fill_value=0
)

print(pivot)

# Save pivot table
pivot.to_excel("pivot_report.xlsx")

Charts and visualization

Generate charts from Excel data:

import pandas as pd
import matplotlib.pyplot as plt

df = pd.read_excel("data.xlsx")

# Create bar chart
df.plot(x="category", y="value", kind="bar")
plt.title("Sales by Category")
plt.xlabel("Category")
plt.ylabel("Sales")
plt.tight_layout()
plt.savefig("chart.png")

# Create pie chart
df.set_index("category")["value"].plot(kind="pie", autopct="%1.1f%%")
plt.title("Market Share")
plt.ylabel("")
plt.savefig("pie_chart.png")

Data cleaning

Clean and prepare Excel data:

import pandas as pd

df = pd.read_excel("messy_data.xlsx")

# Remove duplicates
df = df.drop_duplicates()

# Handle missing values
df = df.fillna(0)  # or df.dropna()

# Remove whitespace
df["name"] = df["name"].str.strip()

# Convert data types
df["date"] = pd.to_datetime(df["date"])
df["amount"] = pd.to_numeric(df["amount"], errors="coerce")

# Save cleaned data
df.to_excel("cleaned_data.xlsx", index=False)

Merging and joining

Combine multiple Excel files:

import pandas as pd

# Read multiple files
df1 = pd.read_excel("sales_q1.xlsx")
df2 = pd.read_excel("sales_q2.xlsx")

# Concatenate vertically
combined = pd.concat([df1, df2], ignore_index=True)

# Merge on common column
customers = pd.read_excel("customers.xlsx")
sales = pd.read_excel("sales.xlsx")

merged = pd.merge(sales, customers, on="customer_id", how="left")

merged.to_excel("merged_data.xlsx", index=False)

Advanced formatting

Apply conditional formatting and styles:

import pandas as pd
from openpyxl import load_workbook
from openpyxl.styles import PatternFill, Font

# Create Excel file
df = pd.DataFrame({
    "Product": ["A", "B", "C"],
    "Sales": [100, 200, 150]
})

df.to_excel("formatted.xlsx", index=False)

# Load workbook for formatting
wb = load_workbook("formatted.xlsx")
ws = wb.active

# Apply conditional formatting
red_fill = PatternFill(start_color="FF0000", end_color="FF0000", fill_type="solid")
green_fill = PatternFill(start_color="00FF00", end_color="00FF00", fill_type="solid")

for row in range(2, len(df) + 2):
    cell = ws[f"B{row}"]
    if cell.value < 150:
        cell.fill = red_fill
    else:
        cell.fill = green_fill

# Bold headers
for cell in ws[1]:
    cell.font = Font(bold=True)

wb.save("formatted.xlsx")

Performance tips

  • Use read_excel with usecols to read specific columns only
  • Use chunksize for very large files
  • Consider using engine='openpyxl' or engine='xlrd' based on file type
  • Use dtype parameter to specify column types for faster reading

Available packages

  • pandas - Data analysis and manipulation (primary)
  • openpyxl - Excel file creation and formatting
  • xlrd - Reading older .xls files
  • xlsxwriter - Advanced Excel writing capabilities
  • matplotlib - Chart generation

GitHub リポジトリ

lifangda/claude-plugins
パス: cli-tool/skills-library/data-analysis/excel-analysis

関連スキル

content-collections

メタ

This skill provides a production-tested setup for Content Collections, a TypeScript-first tool that transforms Markdown/MDX files into type-safe data collections with Zod validation. Use it when building blogs, documentation sites, or content-heavy Vite + React applications to ensure type safety and automatic content validation. It covers everything from Vite plugin configuration and MDX compilation to deployment optimization and schema validation.

スキルを見る

polymarket

メタ

This skill enables developers to build applications with the Polymarket prediction markets platform, including API integration for trading and market data. It also provides real-time data streaming via WebSocket to monitor live trades and market activity. Use it for implementing trading strategies or creating tools that process live market updates.

スキルを見る

cloudflare-turnstile

メタ

This skill provides comprehensive guidance for implementing Cloudflare Turnstile as a CAPTCHA-alternative bot protection system. It covers integration for forms, login pages, API endpoints, and frameworks like React/Next.js/Hono, while handling invisible challenges that maintain user experience. Use it when migrating from reCAPTCHA, debugging error codes, or implementing token validation and E2E tests.

スキルを見る

hybrid-cloud-networking

メタ

This skill configures secure hybrid cloud networking between on-premises infrastructure and cloud platforms like AWS, Azure, and GCP. Use it when connecting data centers to the cloud, building hybrid architectures, or implementing secure cross-premises connectivity. It supports key capabilities such as VPNs and dedicated connections like AWS Direct Connect for high-performance, reliable setups.

スキルを見る