MCP HubMCP Hub
スキル一覧に戻る

index-manager

RobThePCGuy
更新日 Yesterday
84 閲覧
2
2
GitHubで表示
メタaidesign

について

index-managerスキルは、MPEP検索インデックスの完全なライフサイクルを管理します。これには、PDFのダウンロード、コンテンツの抽出、埋め込みの生成、FAISS/BM25インデックスの構築が含まれます。インデックスの再構築や破損問題への対応時における、メンテナンス、最適化、トラブルシューティングのための自動化ツールを提供します。開発者は、初期インデックスの作成、新規コンテンツの追加、または診断チェックでインデックスに問題が示された場合に、これを利用すべきです。

クイックインストール

Claude Code

推奨
プラグインコマンド推奨
/plugin add https://github.com/RobThePCGuy/Claude-Patent-Creator
Git クローン代替
git clone https://github.com/RobThePCGuy/Claude-Patent-Creator.git ~/.claude/skills/index-manager

このコマンドをClaude Codeにコピー&ペーストしてスキルをインストールします

ドキュメント

Index Manager Skill

Expert system for managing MPEP search index lifecycle: PDF downloads, index building, maintenance, updates, optimization.

FOR CLAUDE: All dependencies installed, system operational.

  • Go directly to appropriate phase
  • Scripts/tools in mcp_server/
  • Use patent-creator CLI when available
  • Only run diagnostics if operations fail

When to Use

Building/rebuilding MPEP index, corruption/missing files, optimization, adding content, troubleshooting.

Index Lifecycle

PDFs Not Present -> Download (2-5 min, 500MB)
  -> Extract & Parse (500MB data)
  -> Generate Embeddings (5-10 min GPU, 35-65 min CPU)
  -> Build FAISS + BM25 Indexes
  -> Index Ready (mcp_server/index/)
  -> Maintenance (Verify -> Optimize -> Update)

Phase 1: PDF Management

Check Status:

ls pdfs/  # Should show mpep-*.pdf, consolidated_laws.pdf, consolidated_rules.pdf

Download PDFs:

patent-creator download-mpep
# Or: python install.py (Select "Download MPEP PDFs")

Verify Integrity:

python -c "
import fitz
from pathlib import Path
for pdf in Path('pdfs').glob('*.pdf'):
    try:
        doc = fitz.open(pdf)
        print(f'[OK] {pdf.name}: {len(doc)} pages')
        doc.close()
    except Exception as e:
        print(f'[X] {pdf.name}: ERROR - {e}')
"

Phase 2: Index Building

patent-creator rebuild-index
# Or: python mcp_server/server.py --rebuild-index

Timeline:

  • Load PDFs: 30s
  • Extract text: 1-2 min
  • Chunk text (500 tokens): 30s
  • Generate embeddings: 5-10 min (GPU) or 35-65 min (CPU)
  • Build FAISS/BM25: 1 min
  • Save to disk: 10s

Total: 5-15 min (GPU) or 35-65 min (CPU)

Custom Build:

from mcp_server.mpep_search import MPEPIndex
index = MPEPIndex(use_hyde=False)
index.build_index(
    chunk_size=500,
    overlap=50,
    batch_size=32  # Reduce to 16/8 if OOM
)

Phase 3: Verification

# Check files
ls -lh mcp_server/index/
# Expected: mpep_index.faiss (~150MB), mpep_metadata.json (~80MB), mpep_bm25.pkl (~60MB)

# Verify health
patent-creator health
# Should show: [OK] MPEP Index: Ready (12,543 chunks)

# Manual test
python -c "
from mcp_server.mpep_search import MPEPIndex
index = MPEPIndex()
print(f'Chunks: {len(index.chunks)}')
results = index.search('claim definiteness', top_k=3)
print(f'Search results: {len(results)}')
"

Phase 4: Maintenance

When to Rebuild:

  • MPEP updates (quarterly check uspto.gov)
  • Index corruption
  • After adding new PDFs
  • Performance degradation
  • Machine migration

Rebuild Process:

# Backup (optional)
cp -r mcp_server/index mcp_server/index_backup_$(date +%Y%m%d)

# Rebuild
patent-creator rebuild-index

# Verify
patent-creator health

# Remove backup if successful
rm -rf mcp_server/index_backup_*

Phase 5: Content Updates

# Download new PDF
wget https://www.uspto.gov/web/offices/pac/mpep/mpep-2900.pdf -O pdfs/mpep-2900.pdf

# Rebuild (includes new section)
patent-creator rebuild-index

Note: Incremental updates not supported. Full rebuild required.

Troubleshooting

  • OOM errors during build
  • Build taking too long
  • Corrupted index files
  • Search returning no results

Performance Tuning

  • Embedding generation speed (GPU vs CPU)
  • Search latency optimization
  • Index size reduction
  • Batch size tuning

Quick Reference

CommandPurpose
patent-creator download-mpepDownload MPEP PDFs
patent-creator rebuild-indexBuild/rebuild search index
patent-creator healthCheck index health
ls -lh mcp_server/index/View index files

Best Practices:

  1. Backup before rebuild
  2. Verify PDFs before building
  3. Use GPU for 10x faster builds
  4. Test after rebuild
  5. Keep PDFs until verified
  6. Weekly health checks

GitHub リポジトリ

RobThePCGuy/Claude-Patent-Creator
パス: skills/index-manager
bigqueryclaude-codeclaude-code-pluginfaissmcp-servermpep

関連スキル

content-collections

メタ

This skill provides a production-tested setup for Content Collections, a TypeScript-first tool that transforms Markdown/MDX files into type-safe data collections with Zod validation. Use it when building blogs, documentation sites, or content-heavy Vite + React applications to ensure type safety and automatic content validation. It covers everything from Vite plugin configuration and MDX compilation to deployment optimization and schema validation.

スキルを見る

creating-opencode-plugins

メタ

This skill provides the structure and API specifications for creating OpenCode plugins that hook into 25+ event types like commands, files, and LSP operations. It offers implementation patterns for JavaScript/TypeScript modules that intercept and extend the AI assistant's lifecycle. Use it when you need to build event-driven plugins for monitoring, custom handling, or extending OpenCode's capabilities.

スキルを見る

evaluating-llms-harness

テスト

This Claude Skill runs the lm-evaluation-harness to benchmark LLMs across 60+ standardized academic tasks like MMLU and GSM8K. It's designed for developers to compare model quality, track training progress, or report academic results. The tool supports various backends including HuggingFace and vLLM models.

スキルを見る

sglang

メタ

SGLang is a high-performance LLM serving framework that specializes in fast, structured generation for JSON, regex, and agentic workflows using its RadixAttention prefix caching. It delivers significantly faster inference, especially for tasks with repeated prefixes, making it ideal for complex, structured outputs and multi-turn conversations. Choose SGLang over alternatives like vLLM when you need constrained decoding or are building applications with extensive prefix sharing.

スキルを見る