codex
について
このClaude Skillは、コード分析、リファクタリング、自動編集のためのCodex CLI操作を扱います。指定されたモデルと推論努力レベルを使用してコマンドを実行し、セキュリティのためにサンドボックスモードを管理します。このスキルにはセッション再開機能が含まれており、デフォルトでgitリポジトリチェックをスキップする必要があります。
クイックインストール
Claude Code
推奨/plugin add https://github.com/iamladi/cautious-computing-machine--sdlc-plugingit clone https://github.com/iamladi/cautious-computing-machine--sdlc-plugin.git ~/.claude/skills/codexこのコマンドをClaude Codeにコピー&ペーストしてスキルをインストールします
ドキュメント
Codex Skill Guide
Running a Task
- Ask the user (via
AskUserQuestion) which model to run (gpt-5-codexorgpt-5) AND which reasoning effort to use (high,medium, orlow) in a single prompt with two questions. - Select the sandbox mode required for the task; default to
--sandbox read-onlyunless edits or network access are necessary. - Assemble the command with the appropriate options:
-m, --model <MODEL>--config model_reasoning_effort="<high|medium|low>"--sandbox <read-only|workspace-write|danger-full-access>--full-auto-C, --cd <DIR>--skip-git-repo-check
- Always use --skip-git-repo-check.
- When continuing a previous session, use
codex exec --skip-git-repo-check resume --lastvia stdin. When resuming don't use any configuration flags unless explicitly requested by the user e.g. if he species the model or the reasoning effort when requesting to resume a session. Resume syntax:echo "your prompt here" | codex exec --skip-git-repo-check resume --last 2>/dev/null. All flags have to be inserted between exec and resume. - IMPORTANT: By default, append
2>/dev/nullto allcodex execcommands to suppress thinking tokens (stderr). Only show stderr if the user explicitly requests to see thinking tokens or if debugging is needed. - Run the command, capture stdout/stderr (filtered as appropriate), and summarize the outcome for the user.
- After Codex completes, inform the user: "You can resume this Codex session at any time by saying 'codex resume' or asking me to continue with additional analysis or changes."
Quick Reference
| Use case | Sandbox mode | Key flags |
|---|---|---|
| Read-only review or analysis | read-only | --sandbox read-only 2>/dev/null |
| Apply local edits | workspace-write | --sandbox workspace-write --full-auto 2>/dev/null |
| Permit network or broad access | danger-full-access | --sandbox danger-full-access --full-auto 2>/dev/null |
| Resume recent session | Inherited from original | echo "prompt" | codex exec --skip-git-repo-check resume --last 2>/dev/null (no flags allowed) |
| Run from another directory | Match task needs | -C <DIR> plus other flags 2>/dev/null |
Following Up
- After every
codexcommand, immediately useAskUserQuestionto confirm next steps, collect clarifications, or decide whether to resume withcodex exec resume --last. - When resuming, pipe the new prompt via stdin:
echo "new prompt" | codex exec resume --last 2>/dev/null. The resumed session automatically uses the same model, reasoning effort, and sandbox mode from the original session. - Restate the chosen model, reasoning effort, and sandbox mode when proposing follow-up actions.
Error Handling
- Stop and report failures whenever
codex --versionor acodex execcommand exits non-zero; request direction before retrying. - Before you use high-impact flags (
--full-auto,--sandbox danger-full-access,--skip-git-repo-check) ask the user for permission using AskUserQuestion unless it was already given. - When output includes warnings or partial results, summarize them and ask how to adjust using
AskUserQuestion.
GitHub リポジトリ
関連スキル
content-collections
メタThis skill provides a production-tested setup for Content Collections, a TypeScript-first tool that transforms Markdown/MDX files into type-safe data collections with Zod validation. Use it when building blogs, documentation sites, or content-heavy Vite + React applications to ensure type safety and automatic content validation. It covers everything from Vite plugin configuration and MDX compilation to deployment optimization and schema validation.
evaluating-llms-harness
テストThis Claude Skill runs the lm-evaluation-harness to benchmark LLMs across 60+ standardized academic tasks like MMLU and GSM8K. It's designed for developers to compare model quality, track training progress, or report academic results. The tool supports various backends including HuggingFace and vLLM models.
sglang
メタSGLang is a high-performance LLM serving framework that specializes in fast, structured generation for JSON, regex, and agentic workflows using its RadixAttention prefix caching. It delivers significantly faster inference, especially for tasks with repeated prefixes, making it ideal for complex, structured outputs and multi-turn conversations. Choose SGLang over alternatives like vLLM when you need constrained decoding or are building applications with extensive prefix sharing.
cloudflare-turnstile
メタThis skill provides comprehensive guidance for implementing Cloudflare Turnstile as a CAPTCHA-alternative bot protection system. It covers integration for forms, login pages, API endpoints, and frameworks like React/Next.js/Hono, while handling invisible challenges that maintain user experience. Use it when migrating from reCAPTCHA, debugging error codes, or implementing token validation and E2E tests.
