abaqus-fatigue-analysis
について
このスキルは、Abaqus FEA応力結果を用いた疲労寿命予測のワークフローを提供し、サイクルカウント、マイナーの法則による損傷累積、S-N曲線解析を実装します。耐久性評価、サイクルカウント、または応力履歴からの疲労寿命計算が必要な開発者にご利用ください。Abaqusのネイティブな疲労解析機能は限られているため、抽出されたAbaqus応力データと連携して動作することに注意してください。
クイックインストール
Claude Code
推奨/plugin add https://github.com/majiayu000/claude-skill-registrygit clone https://github.com/majiayu000/claude-skill-registry.git ~/.claude/skills/abaqus-fatigue-analysisこのコマンドをClaude Codeにコピー&ペーストしてスキルをインストールします
ドキュメント
Abaqus Fatigue Analysis Skill
Predict fatigue life from FEA stress results using S-N curves and damage accumulation.
When to Use This Skill
Route here when user mentions:
- "fatigue", "how many cycles", "fatigue life"
- "durability", "S-N curve", "cycles to failure"
- "rainflow counting", "Miner's rule"
- "high-cycle fatigue", "low-cycle fatigue"
Route elsewhere:
- Just stress analysis →
/abaqus-static-analysis - Crack propagation → specialized fracture tools
- Static strength check →
/abaqus-static-analysis
Important: Abaqus Fatigue Limitations
Abaqus has limited native fatigue capabilities. The typical workflow is:
- Run structural analysis in Abaqus (stress/strain results)
- Extract stress history from ODB
- Apply fatigue criteria externally (Basquin, Miner's rule)
For full fatigue analysis, consider external tools: fe-safe, nCode, FEMFAT.
Prerequisites
Before fatigue analysis:
- ✅ Completed static or dynamic analysis with converged results
- ✅ Material fatigue data (S-N curve or Coffin-Manson parameters)
- ✅ Stress output at critical locations
Workflow Steps
Step 1: Run Stress Analysis
Use /abaqus-static-analysis for constant loads or /abaqus-dynamic-analysis for time-varying.
Ensure output requests include:
S- Stress components (principal, Mises)E- Strain componentsPEEQ- Equivalent plastic strain (for low-cycle)
Step 2: Identify Critical Location
Find the maximum stress location:
- Use
/abaqus-odbto extract peak stress - Check stress concentrations (fillets, holes, notches)
- Consider fatigue notch factor (Kf) vs stress concentration (Kt)
Step 3: Extract Stress History
For constant amplitude: single max/min stress values. For variable amplitude: full stress-time history for rainflow counting.
Step 4: Apply Fatigue Criteria
Use appropriate method based on loading and life regime.
Step 5: Calculate Life and Damage
Apply Basquin equation for life, Miner's rule for cumulative damage.
Key Decisions
Fatigue Approach
| Approach | When to Use | Data Needed |
|---|---|---|
| Stress-life (S-N) | High-cycle (N > 10^4) | S-N curve |
| Strain-life (e-N) | Low-cycle (N < 10^4) | Coffin-Manson params |
| Fracture mechanics | Crack growth | da/dN curve |
Loading Type
| Loading | Analysis Method |
|---|---|
| Constant amplitude | Single static analysis |
| Variable amplitude | Multiple loads + rainflow |
| Proportional | Single load case |
| Non-proportional | Critical plane method |
Mean Stress Correction
| Method | Use Case |
|---|---|
| Goodman | Conservative, tensile mean |
| Gerber | Less conservative |
| Soderberg | Very conservative |
| SWT | Strain-life with mean stress |
What to Ask the User
If unclear, ask:
- Material fatigue properties? S-N curve coefficients or test data?
- Loading type? Constant amplitude or variable (spectrum)?
- Mean stress? Fully reversed (R=-1) or with mean stress (R=0)?
- Critical location known? Or need to find max stress?
- Life target? What's the required number of cycles?
Key Parameters
| Parameter | Typical Values | Notes |
|---|---|---|
| S-N slope (b) | 0.08-0.15 | Lower = longer life |
| Endurance limit | 40-50% UTS (steel) | Stress below which infinite life |
| Fatigue notch factor (Kf) | 1.0-3.0 | Kf = 1 + q(Kt-1) |
| Notch sensitivity (q) | 0.7-0.95 | Higher for stronger steels |
Troubleshooting
| Problem | Cause | Solution |
|---|---|---|
| Unrealistically short life | Stress singularity | Use Kf correction, refine mesh away from singularity |
| Wrong units | MPa vs Pa mismatch | Verify stress units match S-N data |
| Unconservative prediction | Missing mean stress | Apply Goodman/Gerber correction |
| Very long calculated life | Stress below endurance limit | Check if stress > endurance limit |
Related Skills
/abaqus-static-analysis- Base stress analysis/abaqus-dynamic-analysis- Time-varying loading/abaqus-amplitude- Cyclic loading definition/abaqus-odb- Extract stress history from results
Code Patterns
For API syntax, equations, and code examples, see:
GitHub リポジトリ
関連スキル
content-collections
メタThis skill provides a production-tested setup for Content Collections, a TypeScript-first tool that transforms Markdown/MDX files into type-safe data collections with Zod validation. Use it when building blogs, documentation sites, or content-heavy Vite + React applications to ensure type safety and automatic content validation. It covers everything from Vite plugin configuration and MDX compilation to deployment optimization and schema validation.
sglang
メタSGLang is a high-performance LLM serving framework that specializes in fast, structured generation for JSON, regex, and agentic workflows using its RadixAttention prefix caching. It delivers significantly faster inference, especially for tasks with repeated prefixes, making it ideal for complex, structured outputs and multi-turn conversations. Choose SGLang over alternatives like vLLM when you need constrained decoding or are building applications with extensive prefix sharing.
cloudflare-turnstile
メタThis skill provides comprehensive guidance for implementing Cloudflare Turnstile as a CAPTCHA-alternative bot protection system. It covers integration for forms, login pages, API endpoints, and frameworks like React/Next.js/Hono, while handling invisible challenges that maintain user experience. Use it when migrating from reCAPTCHA, debugging error codes, or implementing token validation and E2E tests.
Algorithmic Art Generation
メタThis skill helps developers create algorithmic art using p5.js, focusing on generative art, computational aesthetics, and interactive visualizations. It automatically activates for topics like "generative art" or "p5.js visualization" and guides you through creating unique algorithms with features like seeded randomness, flow fields, and particle systems. Use it when you need to build reproducible, code-driven artistic patterns.
