company-discovery
について
このスキルは、開発者が求職活動において企業を発見・評価することを支援し、二つのモードで動作します。エンリッチメントモードでは特定の企業に関する詳細な調査を提供し、ディスカバリーモードでは対象業界内の複数企業を発見してランク付けします。適合度スコア付きの詳細な企業プロファイルを生成し、指定された条件に基づいて最適化された求職検索クエリを作成します。
クイックインストール
Claude Code
推奨/plugin add https://github.com/majiayu000/claude-skill-registrygit clone https://github.com/majiayu000/claude-skill-registry.git ~/.claude/skills/company-discoveryこのコマンドをClaude Codeにコピー&ペーストしてスキルをインストールします
ドキュメント
Company Discovery Workflow
Load and execute: workflows/company-discovery/workflow.md
Read the entire workflow file and execute it step by step. This workflow operates in two modes:
Enrichment Mode (specific company):
- Trigger:
/company-discovery Stripeor "tell me more about Stripe" - Deep-dive research on a single company
- Gathers remote policy, tech stack, salary data, funding news
- Creates detailed profile in
research/companies/{industry}/{company}.md
Discovery Mode (industry):
- Trigger:
/company-discovery fintechor "find companies in fintech" - Discovers 5-10 companies in the target industry
- Evaluates and ranks each by fit
- Creates index and individual profiles in
research/companies/{industry}/
Both modes produce:
- Fit scoring against your constraints
- Hiring signals (funding, growth, leadership changes)
- Optimized job search queries for LinkedIn and other platforms
Opening Tracking: Each company profile includes a "Tracked Openings" section that is automatically populated when you run job-scan on postings from that company. This creates a per-company view of all opportunities you've analyzed, with fit scores and links to detailed analyses.
Follow all steps exactly as written. Embody Scout's quality-over-quantity approach to company targeting.
$ARGUMENTS
GitHub リポジトリ
関連スキル
evaluating-llms-harness
テストThis Claude Skill runs the lm-evaluation-harness to benchmark LLMs across 60+ standardized academic tasks like MMLU and GSM8K. It's designed for developers to compare model quality, track training progress, or report academic results. The tool supports various backends including HuggingFace and vLLM models.
sglang
メタSGLang is a high-performance LLM serving framework that specializes in fast, structured generation for JSON, regex, and agentic workflows using its RadixAttention prefix caching. It delivers significantly faster inference, especially for tasks with repeated prefixes, making it ideal for complex, structured outputs and multi-turn conversations. Choose SGLang over alternatives like vLLM when you need constrained decoding or are building applications with extensive prefix sharing.
cloudflare-turnstile
メタThis skill provides comprehensive guidance for implementing Cloudflare Turnstile as a CAPTCHA-alternative bot protection system. It covers integration for forms, login pages, API endpoints, and frameworks like React/Next.js/Hono, while handling invisible challenges that maintain user experience. Use it when migrating from reCAPTCHA, debugging error codes, or implementing token validation and E2E tests.
langchain
メタLangChain is a framework for building LLM applications using agents, chains, and RAG pipelines. It supports multiple LLM providers, offers 500+ integrations, and includes features like tool calling and memory management. Use it for rapid prototyping and deploying production systems like chatbots, autonomous agents, and question-answering services.
