MCP HubMCP Hub
スキル一覧に戻る

workflow-management

sgcarstrends
更新日 Today
62 閲覧
9
1
9
GitHubで表示
メタapiautomationdata

について

このスキルは、開発者がAPIサービス内でデータ更新とソーシャルメディア投稿のためのQStashワークフローを作成、デバッグ、修正することを可能にします。新しい自動化ジョブの追加、ワークフローのエラー修正、またはスケジューリングロジックの更新を行う際に使用すべきです。このスキルは、`apps/api/src/lib/workflows/` ディレクトリにあるワークフローファイルの読み取り、書き込み、管理のためのツールへのアクセスを提供します。

クイックインストール

Claude Code

推奨
プラグインコマンド推奨
/plugin add https://github.com/sgcarstrends/sgcarstrends
Git クローン代替
git clone https://github.com/sgcarstrends/sgcarstrends.git ~/.claude/skills/workflow-management

このコマンドをClaude Codeにコピー&ペーストしてスキルをインストールします

ドキュメント

Workflow Management Skill

This skill helps you work with QStash-based workflows in apps/api/src/lib/workflows/.

When to Use This Skill

  • Adding new scheduled workflows for data fetching
  • Debugging workflow execution errors
  • Modifying existing workflow schedules or logic
  • Integrating new data sources into the update pipeline
  • Adding new social media posting workflows

Workflow Architecture

The project uses QStash workflows with the following structure:

apps/api/src/lib/workflows/
├── cars/                 # Car registration data workflows
│   └── update.ts        # Scheduled car data updates
├── coe/                 # COE bidding data workflows
│   └── update.ts        # Scheduled COE data updates
└── social/              # Social media posting workflows
    ├── discord.ts
    ├── linkedin.ts
    ├── telegram.ts
    └── twitter.ts

Key Patterns

1. Workflow Definition

Workflows are defined using QStash SDK:

import { serve } from "@upstash/workflow";

export const POST = serve(async (context) => {
  // Step 1: Fetch data
  await context.run("fetch-data", async () => {
    // Fetching logic
  });

  // Step 2: Process data
  const processed = await context.run("process-data", async () => {
    // Processing logic
  });

  // Step 3: Store results
  await context.run("store-results", async () => {
    // Storage logic
  });
});

2. Scheduling Workflows

Workflows are triggered via cron schedules configured in:

  • SST infrastructure (infra/)
  • QStash console
  • Manual API calls to workflow endpoints

3. Error Handling

Always include comprehensive error handling:

await context.run("step-name", async () => {
  try {
    // Logic here
  } catch (error) {
    console.error("Step failed:", error);
    // Log to monitoring service
    throw error; // Re-throw for workflow retry
  }
});

Common Tasks

Adding a New Workflow

  1. Create workflow file in appropriate directory
  2. Define workflow steps using context.run()
  3. Add route handler in apps/api/src/routes/
  4. Configure scheduling (if needed)
  5. Add tests for workflow logic

Debugging Workflow Failures

  1. Check QStash dashboard for execution logs
  2. Review CloudWatch logs for Lambda errors
  3. Verify environment variables are set correctly
  4. Test workflow locally using development server
  5. Check database connectivity and Redis availability

Modifying Existing Workflows

  1. Read existing workflow implementation
  2. Identify which step needs modification
  3. Update step logic while maintaining error handling
  4. Test changes locally
  5. Deploy and monitor execution

Environment Variables

Workflows typically need:

  • DATABASE_URL - PostgreSQL connection
  • UPSTASH_REDIS_REST_URL / UPSTASH_REDIS_REST_TOKEN - Redis
  • QSTASH_TOKEN - QStash authentication
  • Service-specific tokens (Discord webhook, Twitter API, etc.)

Testing Workflows

Run workflow tests:

pnpm -F @sgcarstrends/api test -- src/lib/workflows

Test individual workflow locally:

# Start dev server
pnpm dev

# Trigger workflow via HTTP
curl -X POST http://localhost:3000/api/workflows/cars/update

References

  • QStash Workflows: Check Context7 for Upstash QStash documentation
  • Related files:
    • apps/api/src/routes/workflows.ts - Workflow route handlers
    • apps/api/src/config/qstash.ts - QStash configuration
    • apps/api/CLAUDE.md - API service documentation

Best Practices

  1. Idempotency: Ensure workflows can safely retry without duplicating data
  2. Step Granularity: Break workflows into small, focused steps
  3. Logging: Add comprehensive logging for debugging
  4. Timeouts: Configure appropriate timeouts for long-running operations
  5. Testing: Write unit tests for workflow logic
  6. Monitoring: Track workflow execution metrics

GitHub リポジトリ

sgcarstrends/sgcarstrends
パス: .claude/skills/workflow-management
apiaws-lambdabackendhonojob-schedulerneon-postgres

関連スキル

content-collections

メタ

This skill provides a production-tested setup for Content Collections, a TypeScript-first tool that transforms Markdown/MDX files into type-safe data collections with Zod validation. Use it when building blogs, documentation sites, or content-heavy Vite + React applications to ensure type safety and automatic content validation. It covers everything from Vite plugin configuration and MDX compilation to deployment optimization and schema validation.

スキルを見る

creating-opencode-plugins

メタ

This skill provides the structure and API specifications for creating OpenCode plugins that hook into 25+ event types like commands, files, and LSP operations. It offers implementation patterns for JavaScript/TypeScript modules that intercept and extend the AI assistant's lifecycle. Use it when you need to build event-driven plugins for monitoring, custom handling, or extending OpenCode's capabilities.

スキルを見る

evaluating-llms-harness

テスト

This Claude Skill runs the lm-evaluation-harness to benchmark LLMs across 60+ standardized academic tasks like MMLU and GSM8K. It's designed for developers to compare model quality, track training progress, or report academic results. The tool supports various backends including HuggingFace and vLLM models.

スキルを見る

sglang

メタ

SGLang is a high-performance LLM serving framework that specializes in fast, structured generation for JSON, regex, and agentic workflows using its RadixAttention prefix caching. It delivers significantly faster inference, especially for tasks with repeated prefixes, making it ideal for complex, structured outputs and multi-turn conversations. Choose SGLang over alternatives like vLLM when you need constrained decoding or are building applications with extensive prefix sharing.

スキルを見る