workflow-management
について
このスキルは、開発者がAPIサービス内でデータ更新とソーシャルメディア投稿のためのQStashワークフローを作成、デバッグ、修正することを可能にします。新しい自動化ジョブの追加、ワークフローのエラー修正、またはスケジューリングロジックの更新を行う際に使用すべきです。このスキルは、`apps/api/src/lib/workflows/` ディレクトリにあるワークフローファイルの読み取り、書き込み、管理のためのツールへのアクセスを提供します。
クイックインストール
Claude Code
推奨/plugin add https://github.com/sgcarstrends/sgcarstrendsgit clone https://github.com/sgcarstrends/sgcarstrends.git ~/.claude/skills/workflow-managementこのコマンドをClaude Codeにコピー&ペーストしてスキルをインストールします
ドキュメント
Workflow Management Skill
This skill helps you work with QStash-based workflows in apps/api/src/lib/workflows/.
When to Use This Skill
- Adding new scheduled workflows for data fetching
- Debugging workflow execution errors
- Modifying existing workflow schedules or logic
- Integrating new data sources into the update pipeline
- Adding new social media posting workflows
Workflow Architecture
The project uses QStash workflows with the following structure:
apps/api/src/lib/workflows/
├── cars/ # Car registration data workflows
│ └── update.ts # Scheduled car data updates
├── coe/ # COE bidding data workflows
│ └── update.ts # Scheduled COE data updates
└── social/ # Social media posting workflows
├── discord.ts
├── linkedin.ts
├── telegram.ts
└── twitter.ts
Key Patterns
1. Workflow Definition
Workflows are defined using QStash SDK:
import { serve } from "@upstash/workflow";
export const POST = serve(async (context) => {
// Step 1: Fetch data
await context.run("fetch-data", async () => {
// Fetching logic
});
// Step 2: Process data
const processed = await context.run("process-data", async () => {
// Processing logic
});
// Step 3: Store results
await context.run("store-results", async () => {
// Storage logic
});
});
2. Scheduling Workflows
Workflows are triggered via cron schedules configured in:
- SST infrastructure (
infra/) - QStash console
- Manual API calls to workflow endpoints
3. Error Handling
Always include comprehensive error handling:
await context.run("step-name", async () => {
try {
// Logic here
} catch (error) {
console.error("Step failed:", error);
// Log to monitoring service
throw error; // Re-throw for workflow retry
}
});
Common Tasks
Adding a New Workflow
- Create workflow file in appropriate directory
- Define workflow steps using
context.run() - Add route handler in
apps/api/src/routes/ - Configure scheduling (if needed)
- Add tests for workflow logic
Debugging Workflow Failures
- Check QStash dashboard for execution logs
- Review CloudWatch logs for Lambda errors
- Verify environment variables are set correctly
- Test workflow locally using development server
- Check database connectivity and Redis availability
Modifying Existing Workflows
- Read existing workflow implementation
- Identify which step needs modification
- Update step logic while maintaining error handling
- Test changes locally
- Deploy and monitor execution
Environment Variables
Workflows typically need:
DATABASE_URL- PostgreSQL connectionUPSTASH_REDIS_REST_URL/UPSTASH_REDIS_REST_TOKEN- RedisQSTASH_TOKEN- QStash authentication- Service-specific tokens (Discord webhook, Twitter API, etc.)
Testing Workflows
Run workflow tests:
pnpm -F @sgcarstrends/api test -- src/lib/workflows
Test individual workflow locally:
# Start dev server
pnpm dev
# Trigger workflow via HTTP
curl -X POST http://localhost:3000/api/workflows/cars/update
References
- QStash Workflows: Check Context7 for Upstash QStash documentation
- Related files:
apps/api/src/routes/workflows.ts- Workflow route handlersapps/api/src/config/qstash.ts- QStash configurationapps/api/CLAUDE.md- API service documentation
Best Practices
- Idempotency: Ensure workflows can safely retry without duplicating data
- Step Granularity: Break workflows into small, focused steps
- Logging: Add comprehensive logging for debugging
- Timeouts: Configure appropriate timeouts for long-running operations
- Testing: Write unit tests for workflow logic
- Monitoring: Track workflow execution metrics
GitHub リポジトリ
関連スキル
content-collections
メタThis skill provides a production-tested setup for Content Collections, a TypeScript-first tool that transforms Markdown/MDX files into type-safe data collections with Zod validation. Use it when building blogs, documentation sites, or content-heavy Vite + React applications to ensure type safety and automatic content validation. It covers everything from Vite plugin configuration and MDX compilation to deployment optimization and schema validation.
creating-opencode-plugins
メタThis skill provides the structure and API specifications for creating OpenCode plugins that hook into 25+ event types like commands, files, and LSP operations. It offers implementation patterns for JavaScript/TypeScript modules that intercept and extend the AI assistant's lifecycle. Use it when you need to build event-driven plugins for monitoring, custom handling, or extending OpenCode's capabilities.
evaluating-llms-harness
テストThis Claude Skill runs the lm-evaluation-harness to benchmark LLMs across 60+ standardized academic tasks like MMLU and GSM8K. It's designed for developers to compare model quality, track training progress, or report academic results. The tool supports various backends including HuggingFace and vLLM models.
sglang
メタSGLang is a high-performance LLM serving framework that specializes in fast, structured generation for JSON, regex, and agentic workflows using its RadixAttention prefix caching. It delivers significantly faster inference, especially for tasks with repeated prefixes, making it ideal for complex, structured outputs and multi-turn conversations. Choose SGLang over alternatives like vLLM when you need constrained decoding or are building applications with extensive prefix sharing.
