MCP HubMCP Hub
スキル一覧に戻る

AgentDB Advanced Features

proffesor-for-testing
更新日 Yesterday
94 閲覧
99
21
99
GitHubで表示
メタaidesigndata

について

このスキルは、分散型AIシステム構築のための高度なAgentDB機能を解説します。内容には、サブミリ秒単位のノード間通信を実現するQUIC同期やハイブリッドベクター検索が含まれます。マルチエージェント協調、カスタム距離指標、または複数データベース管理を必要とするアプリケーション開発時にご活用ください。本スキルは、プロダクションレベルの分散型ベクター検索システムを実装する開発者向けに設計されています。

クイックインストール

Claude Code

推奨
プラグインコマンド推奨
/plugin add https://github.com/proffesor-for-testing/agentic-qe
Git クローン代替
git clone https://github.com/proffesor-for-testing/agentic-qe.git ~/.claude/skills/AgentDB Advanced Features

このコマンドをClaude Codeにコピー&ペーストしてスキルをインストールします

ドキュメント

AgentDB Advanced Features

What This Skill Does

Covers advanced AgentDB capabilities for distributed systems, multi-database coordination, custom distance metrics, hybrid search (vector + metadata), QUIC synchronization, and production deployment patterns. Enables building sophisticated AI systems with sub-millisecond cross-node communication and advanced search capabilities.

Performance: <1ms QUIC sync, hybrid search with filters, custom distance metrics.

Prerequisites

  • Node.js 18+
  • AgentDB v1.0.7+ (via agentic-flow)
  • Understanding of distributed systems (for QUIC sync)
  • Vector search fundamentals

QUIC Synchronization

What is QUIC Sync?

QUIC (Quick UDP Internet Connections) enables sub-millisecond latency synchronization between AgentDB instances across network boundaries with automatic retry, multiplexing, and encryption.

Benefits:

  • <1ms latency between nodes
  • Multiplexed streams (multiple operations simultaneously)
  • Built-in encryption (TLS 1.3)
  • Automatic retry and recovery
  • Event-based broadcasting

Enable QUIC Sync

import { createAgentDBAdapter } from 'agentic-flow/reasoningbank';

// Initialize with QUIC synchronization
const adapter = await createAgentDBAdapter({
  dbPath: '.agentdb/distributed.db',
  enableQUICSync: true,
  syncPort: 4433,
  syncPeers: [
    '192.168.1.10:4433',
    '192.168.1.11:4433',
    '192.168.1.12:4433',
  ],
});

// Patterns automatically sync across all peers
await adapter.insertPattern({
  // ... pattern data
});

// Available on all peers within ~1ms

QUIC Configuration

const adapter = await createAgentDBAdapter({
  enableQUICSync: true,
  syncPort: 4433,              // QUIC server port
  syncPeers: ['host1:4433'],   // Peer addresses
  syncInterval: 1000,          // Sync interval (ms)
  syncBatchSize: 100,          // Patterns per batch
  maxRetries: 3,               // Retry failed syncs
  compression: true,           // Enable compression
});

Multi-Node Deployment

# Node 1 (192.168.1.10)
AGENTDB_QUIC_SYNC=true \
AGENTDB_QUIC_PORT=4433 \
AGENTDB_QUIC_PEERS=192.168.1.11:4433,192.168.1.12:4433 \
node server.js

# Node 2 (192.168.1.11)
AGENTDB_QUIC_SYNC=true \
AGENTDB_QUIC_PORT=4433 \
AGENTDB_QUIC_PEERS=192.168.1.10:4433,192.168.1.12:4433 \
node server.js

# Node 3 (192.168.1.12)
AGENTDB_QUIC_SYNC=true \
AGENTDB_QUIC_PORT=4433 \
AGENTDB_QUIC_PEERS=192.168.1.10:4433,192.168.1.11:4433 \
node server.js

Distance Metrics

Cosine Similarity (Default)

Best for normalized vectors, semantic similarity:

# CLI
npx agentdb@latest query ./vectors.db "[0.1,0.2,...]" -m cosine

# API
const result = await adapter.retrieveWithReasoning(queryEmbedding, {
  metric: 'cosine',
  k: 10,
});

Use Cases:

  • Text embeddings (BERT, GPT, etc.)
  • Semantic search
  • Document similarity
  • Most general-purpose applications

Formula: cos(θ) = (A · B) / (||A|| × ||B||) Range: [-1, 1] (1 = identical, -1 = opposite)

Euclidean Distance (L2)

Best for spatial data, geometric similarity:

# CLI
npx agentdb@latest query ./vectors.db "[0.1,0.2,...]" -m euclidean

# API
const result = await adapter.retrieveWithReasoning(queryEmbedding, {
  metric: 'euclidean',
  k: 10,
});

Use Cases:

  • Image embeddings
  • Spatial data
  • Computer vision
  • When vector magnitude matters

Formula: d = √(Σ(ai - bi)²) Range: [0, ∞] (0 = identical, ∞ = very different)

Dot Product

Best for pre-normalized vectors, fast computation:

# CLI
npx agentdb@latest query ./vectors.db "[0.1,0.2,...]" -m dot

# API
const result = await adapter.retrieveWithReasoning(queryEmbedding, {
  metric: 'dot',
  k: 10,
});

Use Cases:

  • Pre-normalized embeddings
  • Fast similarity computation
  • When vectors are already unit-length

Formula: dot = Σ(ai × bi) Range: [-∞, ∞] (higher = more similar)

Custom Distance Metrics

// Implement custom distance function
function customDistance(vec1: number[], vec2: number[]): number {
  // Weighted Euclidean distance
  const weights = [1.0, 2.0, 1.5, ...];
  let sum = 0;
  for (let i = 0; i < vec1.length; i++) {
    sum += weights[i] * Math.pow(vec1[i] - vec2[i], 2);
  }
  return Math.sqrt(sum);
}

// Use in search (requires custom implementation)

Hybrid Search (Vector + Metadata)

Basic Hybrid Search

Combine vector similarity with metadata filtering:

// Store documents with metadata
await adapter.insertPattern({
  id: '',
  type: 'document',
  domain: 'research-papers',
  pattern_data: JSON.stringify({
    embedding: documentEmbedding,
    text: documentText,
    metadata: {
      author: 'Jane Smith',
      year: 2025,
      category: 'machine-learning',
      citations: 150,
    }
  }),
  confidence: 1.0,
  usage_count: 0,
  success_count: 0,
  created_at: Date.now(),
  last_used: Date.now(),
});

// Hybrid search: vector similarity + metadata filters
const result = await adapter.retrieveWithReasoning(queryEmbedding, {
  domain: 'research-papers',
  k: 20,
  filters: {
    year: { $gte: 2023 },          // Published 2023 or later
    category: 'machine-learning',   // ML papers only
    citations: { $gte: 50 },       // Highly cited
  },
});

Advanced Filtering

// Complex metadata queries
const result = await adapter.retrieveWithReasoning(queryEmbedding, {
  domain: 'products',
  k: 50,
  filters: {
    price: { $gte: 10, $lte: 100 },      // Price range
    category: { $in: ['electronics', 'gadgets'] },  // Multiple categories
    rating: { $gte: 4.0 },                // High rated
    inStock: true,                        // Available
    tags: { $contains: 'wireless' },      // Has tag
  },
});

Weighted Hybrid Search

Combine vector and metadata scores:

const result = await adapter.retrieveWithReasoning(queryEmbedding, {
  domain: 'content',
  k: 20,
  hybridWeights: {
    vectorSimilarity: 0.7,  // 70% weight on semantic similarity
    metadataScore: 0.3,     // 30% weight on metadata match
  },
  filters: {
    category: 'technology',
    recency: { $gte: Date.now() - 30 * 24 * 3600000 },  // Last 30 days
  },
});

Multi-Database Management

Multiple Databases

// Separate databases for different domains
const knowledgeDB = await createAgentDBAdapter({
  dbPath: '.agentdb/knowledge.db',
});

const conversationDB = await createAgentDBAdapter({
  dbPath: '.agentdb/conversations.db',
});

const codeDB = await createAgentDBAdapter({
  dbPath: '.agentdb/code.db',
});

// Use appropriate database for each task
await knowledgeDB.insertPattern({ /* knowledge */ });
await conversationDB.insertPattern({ /* conversation */ });
await codeDB.insertPattern({ /* code */ });

Database Sharding

// Shard by domain for horizontal scaling
const shards = {
  'domain-a': await createAgentDBAdapter({ dbPath: '.agentdb/shard-a.db' }),
  'domain-b': await createAgentDBAdapter({ dbPath: '.agentdb/shard-b.db' }),
  'domain-c': await createAgentDBAdapter({ dbPath: '.agentdb/shard-c.db' }),
};

// Route queries to appropriate shard
function getDBForDomain(domain: string) {
  const shardKey = domain.split('-')[0];  // Extract shard key
  return shards[shardKey] || shards['domain-a'];
}

// Insert to correct shard
const db = getDBForDomain('domain-a-task');
await db.insertPattern({ /* ... */ });

MMR (Maximal Marginal Relevance)

Retrieve diverse results to avoid redundancy:

// Without MMR: Similar results may be redundant
const standardResults = await adapter.retrieveWithReasoning(queryEmbedding, {
  k: 10,
  useMMR: false,
});

// With MMR: Diverse, non-redundant results
const diverseResults = await adapter.retrieveWithReasoning(queryEmbedding, {
  k: 10,
  useMMR: true,
  mmrLambda: 0.5,  // Balance relevance (0) vs diversity (1)
});

MMR Parameters:

  • mmrLambda = 0: Maximum relevance (may be redundant)
  • mmrLambda = 0.5: Balanced (default)
  • mmrLambda = 1: Maximum diversity (may be less relevant)

Use Cases:

  • Search result diversification
  • Recommendation systems
  • Avoiding echo chambers
  • Exploratory search

Context Synthesis

Generate rich context from multiple memories:

const result = await adapter.retrieveWithReasoning(queryEmbedding, {
  domain: 'problem-solving',
  k: 10,
  synthesizeContext: true,  // Enable context synthesis
});

// ContextSynthesizer creates coherent narrative
console.log('Synthesized Context:', result.context);
// "Based on 10 similar problem-solving attempts, the most effective
//  approach involves: 1) analyzing root cause, 2) brainstorming solutions,
//  3) evaluating trade-offs, 4) implementing incrementally. Success rate: 85%"

console.log('Patterns:', result.patterns);
// Extracted common patterns across memories

Production Patterns

Connection Pooling

// Singleton pattern for shared adapter
class AgentDBPool {
  private static instance: AgentDBAdapter;

  static async getInstance() {
    if (!this.instance) {
      this.instance = await createAgentDBAdapter({
        dbPath: '.agentdb/production.db',
        quantizationType: 'scalar',
        cacheSize: 2000,
      });
    }
    return this.instance;
  }
}

// Use in application
const db = await AgentDBPool.getInstance();
const results = await db.retrieveWithReasoning(queryEmbedding, { k: 10 });

Error Handling

async function safeRetrieve(queryEmbedding: number[], options: any) {
  try {
    const result = await adapter.retrieveWithReasoning(queryEmbedding, options);
    return result;
  } catch (error) {
    if (error.code === 'DIMENSION_MISMATCH') {
      console.error('Query embedding dimension mismatch');
      // Handle dimension error
    } else if (error.code === 'DATABASE_LOCKED') {
      // Retry with exponential backoff
      await new Promise(resolve => setTimeout(resolve, 100));
      return safeRetrieve(queryEmbedding, options);
    }
    throw error;
  }
}

Monitoring and Logging

// Performance monitoring
const startTime = Date.now();
const result = await adapter.retrieveWithReasoning(queryEmbedding, { k: 10 });
const latency = Date.now() - startTime;

if (latency > 100) {
  console.warn('Slow query detected:', latency, 'ms');
}

// Log statistics
const stats = await adapter.getStats();
console.log('Database Stats:', {
  totalPatterns: stats.totalPatterns,
  dbSize: stats.dbSize,
  cacheHitRate: stats.cacheHitRate,
  avgSearchLatency: stats.avgSearchLatency,
});

CLI Advanced Operations

Database Import/Export

# Export with compression
npx agentdb@latest export ./vectors.db ./backup.json.gz --compress

# Import from backup
npx agentdb@latest import ./backup.json.gz --decompress

# Merge databases
npx agentdb@latest merge ./db1.sqlite ./db2.sqlite ./merged.sqlite

Database Optimization

# Vacuum database (reclaim space)
sqlite3 .agentdb/vectors.db "VACUUM;"

# Analyze for query optimization
sqlite3 .agentdb/vectors.db "ANALYZE;"

# Rebuild indices
npx agentdb@latest reindex ./vectors.db

Environment Variables

# AgentDB configuration
AGENTDB_PATH=.agentdb/reasoningbank.db
AGENTDB_ENABLED=true

# Performance tuning
AGENTDB_QUANTIZATION=binary     # binary|scalar|product|none
AGENTDB_CACHE_SIZE=2000
AGENTDB_HNSW_M=16
AGENTDB_HNSW_EF=100

# Learning plugins
AGENTDB_LEARNING=true

# Reasoning agents
AGENTDB_REASONING=true

# QUIC synchronization
AGENTDB_QUIC_SYNC=true
AGENTDB_QUIC_PORT=4433
AGENTDB_QUIC_PEERS=host1:4433,host2:4433

Troubleshooting

Issue: QUIC sync not working

# Check firewall allows UDP port 4433
sudo ufw allow 4433/udp

# Verify peers are reachable
ping host1

# Check QUIC logs
DEBUG=agentdb:quic node server.js

Issue: Hybrid search returns no results

// Relax filters
const result = await adapter.retrieveWithReasoning(queryEmbedding, {
  k: 100,  // Increase k
  filters: {
    // Remove or relax filters
  },
});

Issue: Memory consolidation too aggressive

// Disable automatic optimization
const result = await adapter.retrieveWithReasoning(queryEmbedding, {
  optimizeMemory: false,  // Disable auto-consolidation
  k: 10,
});

Learn More


Category: Advanced / Distributed Systems Difficulty: Advanced Estimated Time: 45-60 minutes

GitHub リポジトリ

proffesor-for-testing/agentic-qe
パス: .claude/skills/agentdb-advanced
agenticqeagenticsfoundationagentsquality-engineering

関連スキル

content-collections

メタ

This skill provides a production-tested setup for Content Collections, a TypeScript-first tool that transforms Markdown/MDX files into type-safe data collections with Zod validation. Use it when building blogs, documentation sites, or content-heavy Vite + React applications to ensure type safety and automatic content validation. It covers everything from Vite plugin configuration and MDX compilation to deployment optimization and schema validation.

スキルを見る

creating-opencode-plugins

メタ

This skill provides the structure and API specifications for creating OpenCode plugins that hook into 25+ event types like commands, files, and LSP operations. It offers implementation patterns for JavaScript/TypeScript modules that intercept and extend the AI assistant's lifecycle. Use it when you need to build event-driven plugins for monitoring, custom handling, or extending OpenCode's capabilities.

スキルを見る

evaluating-llms-harness

テスト

This Claude Skill runs the lm-evaluation-harness to benchmark LLMs across 60+ standardized academic tasks like MMLU and GSM8K. It's designed for developers to compare model quality, track training progress, or report academic results. The tool supports various backends including HuggingFace and vLLM models.

スキルを見る

sglang

メタ

SGLang is a high-performance LLM serving framework that specializes in fast, structured generation for JSON, regex, and agentic workflows using its RadixAttention prefix caching. It delivers significantly faster inference, especially for tasks with repeated prefixes, making it ideal for complex, structured outputs and multi-turn conversations. Choose SGLang over alternatives like vLLM when you need constrained decoding or are building applications with extensive prefix sharing.

スキルを見る