multi-cloud-architecture
について
このClaudeスキルは、AWS、Azure、GCPにまたがるマルチクラウドアーキテクチャを設計するための意思決定フレームワークを提供します。ベンダーロックインを回避し、各プロバイダーから最適なサービスを選択・統合してベストオブブリードソリューションを活用できるよう開発者を支援します。クラウド非依存システムの構築、プロバイダー間の移行、またはマルチクラウドでのワークロード最適化を行う際にご利用ください。
クイックインストール
Claude Code
推奨/plugin add https://github.com/lifangda/claude-pluginsgit clone https://github.com/lifangda/claude-plugins.git ~/.claude/skills/multi-cloud-architectureこのコマンドをClaude Codeにコピー&ペーストしてスキルをインストールします
ドキュメント
Multi-Cloud Architecture
Decision framework and patterns for architecting applications across AWS, Azure, and GCP.
Purpose
Design cloud-agnostic architectures and make informed decisions about service selection across cloud providers.
When to Use
- Design multi-cloud strategies
- Migrate between cloud providers
- Select cloud services for specific workloads
- Implement cloud-agnostic architectures
- Optimize costs across providers
Cloud Service Comparison
Compute Services
| AWS | Azure | GCP | Use Case |
|---|---|---|---|
| EC2 | Virtual Machines | Compute Engine | IaaS VMs |
| ECS | Container Instances | Cloud Run | Containers |
| EKS | AKS | GKE | Kubernetes |
| Lambda | Functions | Cloud Functions | Serverless |
| Fargate | Container Apps | Cloud Run | Managed containers |
Storage Services
| AWS | Azure | GCP | Use Case |
|---|---|---|---|
| S3 | Blob Storage | Cloud Storage | Object storage |
| EBS | Managed Disks | Persistent Disk | Block storage |
| EFS | Azure Files | Filestore | File storage |
| Glacier | Archive Storage | Archive Storage | Cold storage |
Database Services
| AWS | Azure | GCP | Use Case |
|---|---|---|---|
| RDS | SQL Database | Cloud SQL | Managed SQL |
| DynamoDB | Cosmos DB | Firestore | NoSQL |
| Aurora | PostgreSQL/MySQL | Cloud Spanner | Distributed SQL |
| ElastiCache | Cache for Redis | Memorystore | Caching |
Reference: See references/service-comparison.md for complete comparison
Multi-Cloud Patterns
Pattern 1: Single Provider with DR
- Primary workload in one cloud
- Disaster recovery in another
- Database replication across clouds
- Automated failover
Pattern 2: Best-of-Breed
- Use best service from each provider
- AI/ML on GCP
- Enterprise apps on Azure
- General compute on AWS
Pattern 3: Geographic Distribution
- Serve users from nearest cloud region
- Data sovereignty compliance
- Global load balancing
- Regional failover
Pattern 4: Cloud-Agnostic Abstraction
- Kubernetes for compute
- PostgreSQL for database
- S3-compatible storage (MinIO)
- Open source tools
Cloud-Agnostic Architecture
Use Cloud-Native Alternatives
- Compute: Kubernetes (EKS/AKS/GKE)
- Database: PostgreSQL/MySQL (RDS/SQL Database/Cloud SQL)
- Message Queue: Apache Kafka (MSK/Event Hubs/Confluent)
- Cache: Redis (ElastiCache/Azure Cache/Memorystore)
- Object Storage: S3-compatible API
- Monitoring: Prometheus/Grafana
- Service Mesh: Istio/Linkerd
Abstraction Layers
Application Layer
↓
Infrastructure Abstraction (Terraform)
↓
Cloud Provider APIs
↓
AWS / Azure / GCP
Cost Comparison
Compute Pricing Factors
- AWS: On-demand, Reserved, Spot, Savings Plans
- Azure: Pay-as-you-go, Reserved, Spot
- GCP: On-demand, Committed use, Preemptible
Cost Optimization Strategies
- Use reserved/committed capacity (30-70% savings)
- Leverage spot/preemptible instances
- Right-size resources
- Use serverless for variable workloads
- Optimize data transfer costs
- Implement lifecycle policies
- Use cost allocation tags
- Monitor with cloud cost tools
Reference: See references/multi-cloud-patterns.md
Migration Strategy
Phase 1: Assessment
- Inventory current infrastructure
- Identify dependencies
- Assess cloud compatibility
- Estimate costs
Phase 2: Pilot
- Select pilot workload
- Implement in target cloud
- Test thoroughly
- Document learnings
Phase 3: Migration
- Migrate workloads incrementally
- Maintain dual-run period
- Monitor performance
- Validate functionality
Phase 4: Optimization
- Right-size resources
- Implement cloud-native services
- Optimize costs
- Enhance security
Best Practices
- Use infrastructure as code (Terraform/OpenTofu)
- Implement CI/CD pipelines for deployments
- Design for failure across clouds
- Use managed services when possible
- Implement comprehensive monitoring
- Automate cost optimization
- Follow security best practices
- Document cloud-specific configurations
- Test disaster recovery procedures
- Train teams on multiple clouds
Reference Files
references/service-comparison.md- Complete service comparisonreferences/multi-cloud-patterns.md- Architecture patterns
Related Skills
terraform-module-library- For IaC implementationcost-optimization- For cost managementhybrid-cloud-networking- For connectivity
GitHub リポジトリ
関連スキル
content-collections
メタThis skill provides a production-tested setup for Content Collections, a TypeScript-first tool that transforms Markdown/MDX files into type-safe data collections with Zod validation. Use it when building blogs, documentation sites, or content-heavy Vite + React applications to ensure type safety and automatic content validation. It covers everything from Vite plugin configuration and MDX compilation to deployment optimization and schema validation.
creating-opencode-plugins
メタThis skill provides the structure and API specifications for creating OpenCode plugins that hook into 25+ event types like commands, files, and LSP operations. It offers implementation patterns for JavaScript/TypeScript modules that intercept and extend the AI assistant's lifecycle. Use it when you need to build event-driven plugins for monitoring, custom handling, or extending OpenCode's capabilities.
polymarket
メタThis skill enables developers to build applications with the Polymarket prediction markets platform, including API integration for trading and market data. It also provides real-time data streaming via WebSocket to monitor live trades and market activity. Use it for implementing trading strategies or creating tools that process live market updates.
cloudflare-turnstile
メタThis skill provides comprehensive guidance for implementing Cloudflare Turnstile as a CAPTCHA-alternative bot protection system. It covers integration for forms, login pages, API endpoints, and frameworks like React/Next.js/Hono, while handling invisible challenges that maintain user experience. Use it when migrating from reCAPTCHA, debugging error codes, or implementing token validation and E2E tests.
