MCP HubMCP Hub
スキル一覧に戻る

analyzing-logs

jeremylongshore
更新日 Yesterday
93 閲覧
712
74
712
GitHubで表示
メタaidata

について

このスキルは、ユーザーがログ分析やトラブルシューティングの支援を要求した際に、Claudeがアプリケーションログを分析してデバッグやパフォーマンス最適化を行えるようにします。処理の遅いリクエスト、エラーのパターン、リソース警告を特定し、ボトルネックや問題を検出します。このスキルを使ってログデータから迅速に洞察を抽出し、アプリケーションの安定性を向上させることができます。

クイックインストール

Claude Code

推奨
プラグインコマンド推奨
/plugin add https://github.com/jeremylongshore/claude-code-plugins-plus
Git クローン代替
git clone https://github.com/jeremylongshore/claude-code-plugins-plus.git ~/.claude/skills/analyzing-logs

このコマンドをClaude Codeにコピー&ペーストしてスキルをインストールします

ドキュメント

Overview

This skill empowers Claude to automatically analyze application logs, pinpoint performance bottlenecks, and identify recurring errors. It streamlines the debugging process and helps optimize application performance by extracting key insights from log data.

How It Works

  1. Initiate Analysis: Claude activates the log analysis tool upon detecting relevant trigger phrases.
  2. Log Data Extraction: The tool extracts relevant data, including timestamps, request durations, error messages, and resource usage metrics.
  3. Pattern Identification: The tool identifies patterns such as slow requests, frequent errors, and resource exhaustion warnings.
  4. Report Generation: Claude presents a summary of findings, highlighting potential performance issues and optimization opportunities.

When to Use This Skill

This skill activates when you need to:

  • Identify performance bottlenecks in an application.
  • Debug recurring errors and exceptions.
  • Analyze log data for trends and anomalies.
  • Set up structured logging or log aggregation.

Examples

Example 1: Identifying Slow Requests

User request: "Analyze logs for slow requests."

The skill will:

  1. Activate the log analysis tool.
  2. Identify requests exceeding predefined latency thresholds.
  3. Present a list of slow requests with corresponding timestamps and durations.

Example 2: Detecting Error Patterns

User request: "Find error patterns in the application logs."

The skill will:

  1. Activate the log analysis tool.
  2. Scan logs for recurring error messages and exceptions.
  3. Group similar errors and present a summary of error frequencies.

Best Practices

  • Log Level: Ensure appropriate log levels (e.g., INFO, WARN, ERROR) are used to capture relevant information.
  • Structured Logging: Implement structured logging (e.g., JSON format) to facilitate efficient analysis.
  • Log Rotation: Configure log rotation policies to prevent log files from growing excessively.

Integration

This skill can be integrated with other tools for monitoring and alerting. For example, it can be used in conjunction with a monitoring plugin to automatically trigger alerts based on log analysis results. It can also work with deployment tools to rollback deployments when critical errors are detected in the logs.

GitHub リポジトリ

jeremylongshore/claude-code-plugins-plus
パス: backups/skills-batch-20251204-000554/plugins/performance/log-analysis-tool/skills/log-analysis-tool
aiautomationclaude-codedevopsmarketplacemcp

関連スキル

content-collections

メタ

This skill provides a production-tested setup for Content Collections, a TypeScript-first tool that transforms Markdown/MDX files into type-safe data collections with Zod validation. Use it when building blogs, documentation sites, or content-heavy Vite + React applications to ensure type safety and automatic content validation. It covers everything from Vite plugin configuration and MDX compilation to deployment optimization and schema validation.

スキルを見る

evaluating-llms-harness

テスト

This Claude Skill runs the lm-evaluation-harness to benchmark LLMs across 60+ standardized academic tasks like MMLU and GSM8K. It's designed for developers to compare model quality, track training progress, or report academic results. The tool supports various backends including HuggingFace and vLLM models.

スキルを見る

sglang

メタ

SGLang is a high-performance LLM serving framework that specializes in fast, structured generation for JSON, regex, and agentic workflows using its RadixAttention prefix caching. It delivers significantly faster inference, especially for tasks with repeated prefixes, making it ideal for complex, structured outputs and multi-turn conversations. Choose SGLang over alternatives like vLLM when you need constrained decoding or are building applications with extensive prefix sharing.

スキルを見る

polymarket

メタ

This skill enables developers to build applications with the Polymarket prediction markets platform, including API integration for trading and market data. It also provides real-time data streaming via WebSocket to monitor live trades and market activity. Use it for implementing trading strategies or creating tools that process live market updates.

スキルを見る