llm-inference
について
このスキルは、OpenAI互換エンドポイントを備えたCloudflare Pages Functionsを通じてLLM推論を実現します。複数のモデルへのアクセスを提供し、gpt-oss-120bのような高性能オプションや様々なタスク向けの専門モデルを含みます。アプリケーションにLLM機能を統合する必要があり、エージェントに要件に基づいて最適なモデルを選択させたい場合にご利用ください。
クイックインストール
Claude Code
推奨/plugin add https://github.com/dave1010/toolsgit clone https://github.com/dave1010/tools.git ~/.claude/skills/llm-inferenceこのコマンドをClaude Codeにコピー&ペーストしてスキルをインストールします
ドキュメント
LLM Inference
The Cloudflare Pages function functions/cerebras-chat.ts provides OpenAI-compatible LLM inference. See tools/cerebras-llm-inference/index.html for a working example.
Available models
| Model | Max context tokens | Requests / minute | Tokens / minute |
|---|---|---|---|
| gpt-oss-120b | 65,536 | 30 | 64,000 |
| llama-3.3-70b | 65,536 | 30 | 64,000 |
| llama3.1-8b | 8,192 | 30 | 60,000 |
| qwen-3-235b-a22b-instruct-2507 | 65,536 | 30 | 64,000 |
| qwen-3-235b-a22b-thinking-2507 | 65,536 | 30 | 60,000 |
| qwen-3-32b | 65,536 | 30 | 64,000 |
| zai-glm-4.6 | 64,000 | 10 | 150,000 |
llama3.1-8bis the fastest option.zai-glm-4.6is the most powerful option.gpt-oss-120bremains the best all rounder.
LLMs are not just for chat: they can be used to process any string in any arbitrary way. If making a tool that requires the LLM to respond in a specific way or format then be very clear and explicit in its system prompt; eg what to include/exclude, plain/markdown formatting, length, etc.
GitHub リポジトリ
関連スキル
content-collections
メタThis skill provides a production-tested setup for Content Collections, a TypeScript-first tool that transforms Markdown/MDX files into type-safe data collections with Zod validation. Use it when building blogs, documentation sites, or content-heavy Vite + React applications to ensure type safety and automatic content validation. It covers everything from Vite plugin configuration and MDX compilation to deployment optimization and schema validation.
creating-opencode-plugins
メタThis skill provides the structure and API specifications for creating OpenCode plugins that hook into 25+ event types like commands, files, and LSP operations. It offers implementation patterns for JavaScript/TypeScript modules that intercept and extend the AI assistant's lifecycle. Use it when you need to build event-driven plugins for monitoring, custom handling, or extending OpenCode's capabilities.
evaluating-llms-harness
テストThis Claude Skill runs the lm-evaluation-harness to benchmark LLMs across 60+ standardized academic tasks like MMLU and GSM8K. It's designed for developers to compare model quality, track training progress, or report academic results. The tool supports various backends including HuggingFace and vLLM models.
sglang
メタSGLang is a high-performance LLM serving framework that specializes in fast, structured generation for JSON, regex, and agentic workflows using its RadixAttention prefix caching. It delivers significantly faster inference, especially for tasks with repeated prefixes, making it ideal for complex, structured outputs and multi-turn conversations. Choose SGLang over alternatives like vLLM when you need constrained decoding or are building applications with extensive prefix sharing.
