MCP HubMCP Hub
スキル一覧に戻る

Requesting Code Review

bobmatnyc
更新日 Today
58 閲覧
22
3
22
GitHubで表示
デザインaidesign

について

このスキルは、作業を進める前にコードレビュアーサブエージェントを起動し、実装内容が計画や要件に沿っているかを分析します。タスク完了後、主要機能の実装後、あるいはマージ前など、作業が仕様を満たしていることを確認する際に使用すべきです。レビュープロセスでは、テンプレートや例、重大度ガイドラインを活用して問題を早期に発見することができます。

クイックインストール

Claude Code

推奨
プラグインコマンド推奨
/plugin add https://github.com/bobmatnyc/claude-mpm
Git クローン代替
git clone https://github.com/bobmatnyc/claude-mpm.git ~/.claude/skills/Requesting Code Review

このコマンドをClaude Codeにコピー&ペーストしてスキルをインストールします

ドキュメント

Requesting Code Review

Dispatch code-reviewer subagent to catch issues before they cascade.

Core principle: Review early, review often.

When to Request Review

Mandatory:

  • After each task in subagent-driven development
  • After completing major feature
  • Before merge to main

Optional but valuable:

  • When stuck (fresh perspective)
  • Before refactoring (baseline check)
  • After fixing complex bug

Quick Start

1. Get git SHAs:

BASE_SHA=$(git rev-parse HEAD~1)  # or origin/main
HEAD_SHA=$(git rev-parse HEAD)

2. Dispatch code-reviewer subagent:

Use Task tool with code-reviewer type, fill template at Code Reviewer Template

Required placeholders:

  • {WHAT_WAS_IMPLEMENTED} - What you just built
  • {PLAN_OR_REQUIREMENTS} - What it should do
  • {BASE_SHA} - Starting commit
  • {HEAD_SHA} - Ending commit
  • {DESCRIPTION} - Brief summary

3. Act on feedback:

SeverityAction
CriticalFix immediately, don't proceed
ImportantFix before next major task
MinorNote for later, can proceed

See severity guidelines for details.

Integration with Workflows

Subagent-Driven Development:

  • Review after EACH task
  • Catch issues before they compound
  • Fix before moving to next task

Executing Plans:

  • Review after each batch (3 tasks)
  • Get feedback, apply, continue

Ad-Hoc Development:

  • Review before merge
  • Review when stuck

Pushing Back on Reviews

If reviewer wrong:

  • Push back with technical reasoning
  • Show code/tests that prove it works
  • Reference plan requirements
  • Request clarification

See pushing back examples

Common Mistakes

Never:

  • Skip review because "it's simple"
  • Ignore Critical issues
  • Proceed with unfixed Important issues
  • Argue without technical justification

Always:

  • Provide full context in review request
  • Fix Critical issues immediately
  • Document why you disagree (if you do)
  • Re-review after fixing Critical issues

Examples

Need examples? See Review Examples & Workflows for:

  • Complete review output examples
  • Good vs bad review requests
  • Review workflows for different scenarios
  • How to act on different severity levels
  • When and how to push back

Need template? See Code Reviewer Template for the complete subagent dispatch template.

GitHub リポジトリ

bobmatnyc/claude-mpm
パス: src/claude_mpm/skills/bundled/collaboration/requesting-code-review

関連スキル

content-collections

メタ

This skill provides a production-tested setup for Content Collections, a TypeScript-first tool that transforms Markdown/MDX files into type-safe data collections with Zod validation. Use it when building blogs, documentation sites, or content-heavy Vite + React applications to ensure type safety and automatic content validation. It covers everything from Vite plugin configuration and MDX compilation to deployment optimization and schema validation.

スキルを見る

creating-opencode-plugins

メタ

This skill provides the structure and API specifications for creating OpenCode plugins that hook into 25+ event types like commands, files, and LSP operations. It offers implementation patterns for JavaScript/TypeScript modules that intercept and extend the AI assistant's lifecycle. Use it when you need to build event-driven plugins for monitoring, custom handling, or extending OpenCode's capabilities.

スキルを見る

evaluating-llms-harness

テスト

This Claude Skill runs the lm-evaluation-harness to benchmark LLMs across 60+ standardized academic tasks like MMLU and GSM8K. It's designed for developers to compare model quality, track training progress, or report academic results. The tool supports various backends including HuggingFace and vLLM models.

スキルを見る

sglang

メタ

SGLang is a high-performance LLM serving framework that specializes in fast, structured generation for JSON, regex, and agentic workflows using its RadixAttention prefix caching. It delivers significantly faster inference, especially for tasks with repeated prefixes, making it ideal for complex, structured outputs and multi-turn conversations. Choose SGLang over alternatives like vLLM when you need constrained decoding or are building applications with extensive prefix sharing.

スキルを見る