databases
について
このClaudeスキルは、MongoDB(ドキュメントデータベース)とPostgreSQL(リレーショナルデータベース)の両方を扱うための統一された専門知識を提供します。スキーマ設計、クエリと集計の記述、パフォーマンス最適化、データベース操作管理にご利用いただけます。データベース設計、移行、本番環境管理、あるいはドキュメント型とリレーショナル型のアプローチの選択を行う開発者に最適です。
クイックインストール
Claude Code
推奨/plugin add https://github.com/mrgoonie/claudekit-skillsgit clone https://github.com/mrgoonie/claudekit-skills.git ~/.claude/skills/databasesこのコマンドをClaude Codeにコピー&ペーストしてスキルをインストールします
ドキュメント
Databases Skill
Unified guide for working with MongoDB (document-oriented) and PostgreSQL (relational) databases. Choose the right database for your use case and master both systems.
When to Use This Skill
Use when:
- Designing database schemas and data models
- Writing queries (SQL or MongoDB query language)
- Building aggregation pipelines or complex joins
- Optimizing indexes and query performance
- Implementing database migrations
- Setting up replication, sharding, or clustering
- Configuring backups and disaster recovery
- Managing database users and permissions
- Analyzing slow queries and performance issues
- Administering production database deployments
Database Selection Guide
Choose MongoDB When:
- Schema flexibility: frequent structure changes, heterogeneous data
- Document-centric: natural JSON/BSON data model
- Horizontal scaling: need to shard across multiple servers
- High write throughput: IoT, logging, real-time analytics
- Nested/hierarchical data: embedded documents preferred
- Rapid prototyping: schema evolution without migrations
Best for: Content management, catalogs, IoT time series, real-time analytics, mobile apps, user profiles
Choose PostgreSQL When:
- Strong consistency: ACID transactions critical
- Complex relationships: many-to-many joins, referential integrity
- SQL requirement: team expertise, reporting tools, BI systems
- Data integrity: strict schema validation, constraints
- Mature ecosystem: extensive tooling, extensions
- Complex queries: window functions, CTEs, analytical workloads
Best for: Financial systems, e-commerce transactions, ERP, CRM, data warehousing, analytics
Both Support:
- JSON/JSONB storage and querying
- Full-text search capabilities
- Geospatial queries and indexing
- Replication and high availability
- ACID transactions (MongoDB 4.0+)
- Strong security features
Quick Start
MongoDB Setup
# Atlas (Cloud) - Recommended
# 1. Sign up at mongodb.com/atlas
# 2. Create M0 free cluster
# 3. Get connection string
# Connection
mongodb+srv://user:[email protected]/db
# Shell
mongosh "mongodb+srv://cluster.mongodb.net/mydb"
# Basic operations
db.users.insertOne({ name: "Alice", age: 30 })
db.users.find({ age: { $gte: 18 } })
db.users.updateOne({ name: "Alice" }, { $set: { age: 31 } })
db.users.deleteOne({ name: "Alice" })
PostgreSQL Setup
# Ubuntu/Debian
sudo apt-get install postgresql postgresql-contrib
# Start service
sudo systemctl start postgresql
# Connect
psql -U postgres -d mydb
# Basic operations
CREATE TABLE users (id SERIAL PRIMARY KEY, name TEXT, age INT);
INSERT INTO users (name, age) VALUES ('Alice', 30);
SELECT * FROM users WHERE age >= 18;
UPDATE users SET age = 31 WHERE name = 'Alice';
DELETE FROM users WHERE name = 'Alice';
Common Operations
Create/Insert
// MongoDB
db.users.insertOne({ name: "Bob", email: "[email protected]" })
db.users.insertMany([{ name: "Alice" }, { name: "Charlie" }])
-- PostgreSQL
INSERT INTO users (name, email) VALUES ('Bob', '[email protected]');
INSERT INTO users (name, email) VALUES ('Alice', NULL), ('Charlie', NULL);
Read/Query
// MongoDB
db.users.find({ age: { $gte: 18 } })
db.users.findOne({ email: "[email protected]" })
-- PostgreSQL
SELECT * FROM users WHERE age >= 18;
SELECT * FROM users WHERE email = '[email protected]' LIMIT 1;
Update
// MongoDB
db.users.updateOne({ name: "Bob" }, { $set: { age: 25 } })
db.users.updateMany({ status: "pending" }, { $set: { status: "active" } })
-- PostgreSQL
UPDATE users SET age = 25 WHERE name = 'Bob';
UPDATE users SET status = 'active' WHERE status = 'pending';
Delete
// MongoDB
db.users.deleteOne({ name: "Bob" })
db.users.deleteMany({ status: "deleted" })
-- PostgreSQL
DELETE FROM users WHERE name = 'Bob';
DELETE FROM users WHERE status = 'deleted';
Indexing
// MongoDB
db.users.createIndex({ email: 1 })
db.users.createIndex({ status: 1, createdAt: -1 })
-- PostgreSQL
CREATE INDEX idx_users_email ON users(email);
CREATE INDEX idx_users_status_created ON users(status, created_at DESC);
Reference Navigation
MongoDB References
- mongodb-crud.md - CRUD operations, query operators, atomic updates
- mongodb-aggregation.md - Aggregation pipeline, stages, operators, patterns
- mongodb-indexing.md - Index types, compound indexes, performance optimization
- mongodb-atlas.md - Atlas cloud setup, clusters, monitoring, search
PostgreSQL References
- postgresql-queries.md - SELECT, JOINs, subqueries, CTEs, window functions
- postgresql-psql-cli.md - psql commands, meta-commands, scripting
- postgresql-performance.md - EXPLAIN, query optimization, vacuum, indexes
- postgresql-administration.md - User management, backups, replication, maintenance
Python Utilities
Database utility scripts in scripts/:
- db_migrate.py - Generate and apply migrations for both databases
- db_backup.py - Backup and restore MongoDB and PostgreSQL
- db_performance_check.py - Analyze slow queries and recommend indexes
# Generate migration
python scripts/db_migrate.py --db mongodb --generate "add_user_index"
# Run backup
python scripts/db_backup.py --db postgres --output /backups/
# Check performance
python scripts/db_performance_check.py --db mongodb --threshold 100ms
Key Differences Summary
| Feature | MongoDB | PostgreSQL |
|---|---|---|
| Data Model | Document (JSON/BSON) | Relational (Tables/Rows) |
| Schema | Flexible, dynamic | Strict, predefined |
| Query Language | MongoDB Query Language | SQL |
| Joins | $lookup (limited) | Native, optimized |
| Transactions | Multi-document (4.0+) | Native ACID |
| Scaling | Horizontal (sharding) | Vertical (primary), Horizontal (extensions) |
| Indexes | Single, compound, text, geo, etc | B-tree, hash, GiST, GIN, etc |
Best Practices
MongoDB:
- Use embedded documents for 1-to-few relationships
- Reference documents for 1-to-many or many-to-many
- Index frequently queried fields
- Use aggregation pipeline for complex transformations
- Enable authentication and TLS in production
- Use Atlas for managed hosting
PostgreSQL:
- Normalize schema to 3NF, denormalize for performance
- Use foreign keys for referential integrity
- Index foreign keys and frequently filtered columns
- Use EXPLAIN ANALYZE to optimize queries
- Regular VACUUM and ANALYZE maintenance
- Connection pooling (pgBouncer) for web apps
Resources
- MongoDB: https://www.mongodb.com/docs/
- PostgreSQL: https://www.postgresql.org/docs/
- MongoDB University: https://learn.mongodb.com/
- PostgreSQL Tutorial: https://www.postgresqltutorial.com/
GitHub リポジトリ
関連スキル
content-collections
メタThis skill provides a production-tested setup for Content Collections, a TypeScript-first tool that transforms Markdown/MDX files into type-safe data collections with Zod validation. Use it when building blogs, documentation sites, or content-heavy Vite + React applications to ensure type safety and automatic content validation. It covers everything from Vite plugin configuration and MDX compilation to deployment optimization and schema validation.
creating-opencode-plugins
メタThis skill provides the structure and API specifications for creating OpenCode plugins that hook into 25+ event types like commands, files, and LSP operations. It offers implementation patterns for JavaScript/TypeScript modules that intercept and extend the AI assistant's lifecycle. Use it when you need to build event-driven plugins for monitoring, custom handling, or extending OpenCode's capabilities.
evaluating-llms-harness
テストThis Claude Skill runs the lm-evaluation-harness to benchmark LLMs across 60+ standardized academic tasks like MMLU and GSM8K. It's designed for developers to compare model quality, track training progress, or report academic results. The tool supports various backends including HuggingFace and vLLM models.
polymarket
メタThis skill enables developers to build applications with the Polymarket prediction markets platform, including API integration for trading and market data. It also provides real-time data streaming via WebSocket to monitor live trades and market activity. Use it for implementing trading strategies or creating tools that process live market updates.
