MCP HubMCP Hub
スキル一覧に戻る

cryptofeed

2025Emma
更新日 Today
276 閲覧
829
95
829
GitHubで表示
その他data

について

Cryptofeedは、40以上の取引所からWebSocket経由でリアルタイムの暗号通貨市場データにアクセスするためのPythonライブラリです。板情報、約定履歴、ティッカー情報の正規化されたフィードを提供し、アルゴリズム取引システムやデータ分析バックエンドの構築に最適です。ストリーミング市場データ接続の実装や、標準化された取引所データの処理を行う際にこのスキルをご利用ください。

クイックインストール

Claude Code

推奨
プラグインコマンド推奨
/plugin add https://github.com/2025Emma/vibe-coding-cn
Git クローン代替
git clone https://github.com/2025Emma/vibe-coding-cn.git ~/.claude/skills/cryptofeed

このコマンドをClaude Codeにコピー&ペーストしてスキルをインストールします

ドキュメント

Cryptofeed Skill

Comprehensive assistance with Cryptofeed development - a Python library for handling cryptocurrency exchange data feeds with normalized and standardized results.

When to Use This Skill

This skill should be triggered when:

  • Working with real-time cryptocurrency market data
  • Implementing WebSocket streaming from crypto exchanges
  • Building algorithmic trading systems
  • Processing order book updates, trades, or ticker data
  • Connecting to 40+ cryptocurrency exchanges
  • Using normalized exchange APIs
  • Implementing market data backends (Redis, MongoDB, Kafka, etc.)

Quick Reference

Installation

# Basic installation
pip install cryptofeed

# With all optional backends
pip install cryptofeed[all]

Basic Usage Pattern

from cryptofeed import FeedHandler
from cryptofeed.exchanges import Coinbase, Bitfinex
from cryptofeed.defines import TICKER, TRADES, L2_BOOK

# Define callbacks
def ticker_callback(data):
    print(f"Ticker: {data}")

def trade_callback(data):
    print(f"Trade: {data}")

# Create feed handler
fh = FeedHandler()

# Add exchange feeds
fh.add_feed(Coinbase(
    symbols=['BTC-USD'],
    channels=[TICKER],
    callbacks={TICKER: ticker_callback}
))

fh.add_feed(Bitfinex(
    symbols=['BTC-USD'],
    channels=[TRADES],
    callbacks={TRADES: trade_callback}
))

# Start receiving data
fh.run()

National Best Bid/Offer (NBBO)

from cryptofeed import FeedHandler
from cryptofeed.exchanges import Coinbase, Gemini, Kraken

def nbbo_update(symbol, bid, bid_size, ask, ask_size, bid_feed, ask_feed):
    print(f'Pair: {symbol} Bid: {bid:.2f} ({bid_size:.6f}) from {bid_feed}')
    print(f'Ask: {ask:.2f} ({ask_size:.6f}) from {ask_feed}')

f = FeedHandler()
f.add_nbbo([Coinbase, Kraken, Gemini], ['BTC-USD'], nbbo_update)
f.run()

Supported Exchanges (40+)

Major Exchanges

  • Binance (Spot, Futures, Delivery, US)
  • Coinbase, Kraken (Spot, Futures), Bitfinex
  • Gemini, OKX, Bybit
  • Huobi (Spot, DM, Swap), Gate.io (Spot, Futures)
  • KuCoin, Deribit, BitMEX, dYdX

Additional Exchanges

AscendEX, Bequant, bitFlyer, Bithumb, Bitstamp, Blockchain.com, Bit.com, Bitget, Crypto.com, Delta, EXX, FMFW.io, HitBTC, Independent Reserve, OKCoin, Phemex, Poloniex, ProBit, Upbit

Supported Data Channels

Market Data (Public)

  • L1_BOOK - Top of order book
  • L2_BOOK - Price aggregated sizes
  • L3_BOOK - Price aggregated orders
  • TRADES - Executed trades (taker side)
  • TICKER - Price ticker updates
  • FUNDING - Funding rate data
  • OPEN_INTEREST - Open interest statistics
  • LIQUIDATIONS - Liquidation events
  • INDEX - Index price data
  • CANDLES - Candlestick/K-line data

Authenticated Channels (Private)

  • ORDER_INFO - Order status updates
  • TRANSACTIONS - Deposits and withdrawals
  • BALANCES - Wallet balance updates
  • FILLS - User's executed trades

Supported Backends

Write data directly to storage:

  • Redis (Streams and Sorted Sets)
  • Arctic - Time-series database
  • ZeroMQ, InfluxDB v2, MongoDB
  • Kafka, RabbitMQ, PostgreSQL
  • QuasarDB, GCP Pub/Sub, QuestDB
  • UDP/TCP/Unix Sockets

Key Features

Real-time Data Normalization

Cryptofeed normalizes data across all exchanges, providing consistent:

  • Symbol formatting
  • Timestamp handling
  • Data structures
  • Channel names

WebSocket + REST Fallback

  • Primarily uses WebSockets for real-time data
  • Falls back to REST polling when WebSocket unavailable
  • Automatic reconnection handling

NBBO Aggregation

Create synthetic National Best Bid/Offer feeds by aggregating data across multiple exchanges to find arbitrage opportunities.

Backend Integration

Direct data writing to various storage systems without custom integration code.

Requirements

  • Python: 3.8 or higher
  • Installation: Via pip or from source
  • Optional Dependencies: Install backends as needed

Common Use Cases

Multi-Exchange Price Monitoring

fh = FeedHandler()
fh.add_feed(Binance(symbols=['BTC-USDT'], channels=[TICKER], callbacks=ticker_cb))
fh.add_feed(Coinbase(symbols=['BTC-USD'], channels=[TICKER], callbacks=ticker_cb))
fh.add_feed(Kraken(symbols=['BTC-USD'], channels=[TICKER], callbacks=ticker_cb))
fh.run()

Order Book Depth Analysis

def book_callback(book, receipt_timestamp):
    print(f"Bids: {len(book.book.bids)} | Asks: {len(book.book.asks)}")

fh.add_feed(Coinbase(
    symbols=['BTC-USD'],
    channels=[L2_BOOK],
    callbacks={L2_BOOK: book_callback}
))

Trade Flow Analysis

def trade_callback(trade, receipt_timestamp):
    print(f"{trade.exchange} - {trade.symbol}: {trade.side} {trade.amount} @ {trade.price}")

fh.add_feed(Binance(
    symbols=['BTC-USDT', 'ETH-USDT'],
    channels=[TRADES],
    callbacks={TRADES: trade_callback}
))

Reference Files

This skill includes documentation in references/:

  • getting_started.md - Installation and basic usage
  • README.md - Complete overview and examples

Use view to read specific reference files when detailed information is needed.

Working with This Skill

For Beginners

Start with basic FeedHandler setup and single exchange connections before adding multiple feeds.

For Advanced Users

Explore NBBO feeds, authenticated channels, and backend integrations for production systems.

For Code Examples

See the quick reference section above and the reference files for complete working examples.

Resources

Notes

  • Requires Python 3.8+
  • WebSocket-first approach with REST fallback
  • Normalized data across all exchanges
  • Active development and community support
  • 40+ supported exchanges and growing

GitHub リポジトリ

2025Emma/vibe-coding-cn
パス: i18n/zh/skills/cryptofeed

関連スキル

content-collections

メタ

This skill provides a production-tested setup for Content Collections, a TypeScript-first tool that transforms Markdown/MDX files into type-safe data collections with Zod validation. Use it when building blogs, documentation sites, or content-heavy Vite + React applications to ensure type safety and automatic content validation. It covers everything from Vite plugin configuration and MDX compilation to deployment optimization and schema validation.

スキルを見る

polymarket

メタ

This skill enables developers to build applications with the Polymarket prediction markets platform, including API integration for trading and market data. It also provides real-time data streaming via WebSocket to monitor live trades and market activity. Use it for implementing trading strategies or creating tools that process live market updates.

スキルを見る

hybrid-cloud-networking

メタ

This skill configures secure hybrid cloud networking between on-premises infrastructure and cloud platforms like AWS, Azure, and GCP. Use it when connecting data centers to the cloud, building hybrid architectures, or implementing secure cross-premises connectivity. It supports key capabilities such as VPNs and dedicated connections like AWS Direct Connect for high-performance, reliable setups.

スキルを見る

llamaindex

メタ

LlamaIndex is a data framework for building RAG-powered LLM applications, specializing in document ingestion, indexing, and querying. It provides key features like vector indices, query engines, and agents, and supports over 300 data connectors. Use it for document Q&A, chatbots, and knowledge retrieval when building data-centric applications.

スキルを見る