MCP HubMCP Hub
スキル一覧に戻る

cross-conversation-project-manager

OneWave-AI
更新日 Today
41 閲覧
11
4
11
GitHubで表示
メタai

について

このClaude Skillは、長期間にわたる複数の会話で永続的なプロジェクト状態を維持します。タスク、決定事項、障害、リソースを自動的に追跡し、プロジェクトが言及されるたびに更新します。開発者はこれを使用して包括的なステータスレポートを生成し、開発ワークフロー全体にまたがるコミットメントに関する積極的なリマインダーを受け取ることができます。

クイックインストール

Claude Code

推奨
プラグインコマンド推奨
/plugin add https://github.com/OneWave-AI/claude-skills
Git クローン代替
git clone https://github.com/OneWave-AI/claude-skills.git ~/.claude/skills/cross-conversation-project-manager

このコマンドをClaude Codeにコピー&ペーストしてスキルをインストールします

ドキュメント

Cross Conversation Project Manager

Maintain project state across MULTIPLE conversations over days/weeks. Track tasks, decisions, blockers, resources. Auto-update when project mentioned. Generate status reports and proactive reminders.

Instructions

You are a master project manager with persistent memory. Create and maintain project files in /mnt/user-data/outputs/projects/. Track: project name, start date, conversations involved, tasks (completed/in-progress/pending), decisions made, blockers, resources, links to relevant conversations, and last updated timestamp. Auto-update when user mentions the project name. Generate status reports showing all work across multiple conversations. Proactively remind user of commitments and follow-ups. Maintain state across weeks/months.

Output Format

# Cross Conversation Project Manager Output

**Generated**: {timestamp}

---

## Results

[Your formatted output here]

---

## Recommendations

[Actionable next steps]

Best Practices

  1. Be Specific: Focus on concrete, actionable outputs
  2. Use Templates: Provide copy-paste ready formats
  3. Include Examples: Show real-world usage
  4. Add Context: Explain why recommendations matter
  5. Stay Current: Use latest best practices for meta

Common Use Cases

Trigger Phrases:

  • "Help me with [use case]"
  • "Generate [output type]"
  • "Create [deliverable]"

Example Request:

"[Sample user request here]"

Response Approach:

  1. Understand user's context and goals
  2. Generate comprehensive output
  3. Provide actionable recommendations
  4. Include examples and templates
  5. Suggest next steps

Remember: Focus on delivering value quickly and clearly!

GitHub リポジトリ

OneWave-AI/claude-skills
パス: cross-conversation-project-manager

関連スキル

evaluating-llms-harness

テスト

This Claude Skill runs the lm-evaluation-harness to benchmark LLMs across 60+ standardized academic tasks like MMLU and GSM8K. It's designed for developers to compare model quality, track training progress, or report academic results. The tool supports various backends including HuggingFace and vLLM models.

スキルを見る

sglang

メタ

SGLang is a high-performance LLM serving framework that specializes in fast, structured generation for JSON, regex, and agentic workflows using its RadixAttention prefix caching. It delivers significantly faster inference, especially for tasks with repeated prefixes, making it ideal for complex, structured outputs and multi-turn conversations. Choose SGLang over alternatives like vLLM when you need constrained decoding or are building applications with extensive prefix sharing.

スキルを見る

cloudflare-turnstile

メタ

This skill provides comprehensive guidance for implementing Cloudflare Turnstile as a CAPTCHA-alternative bot protection system. It covers integration for forms, login pages, API endpoints, and frameworks like React/Next.js/Hono, while handling invisible challenges that maintain user experience. Use it when migrating from reCAPTCHA, debugging error codes, or implementing token validation and E2E tests.

スキルを見る

langchain

メタ

LangChain is a framework for building LLM applications using agents, chains, and RAG pipelines. It supports multiple LLM providers, offers 500+ integrations, and includes features like tool calling and memory management. Use it for rapid prototyping and deploying production systems like chatbots, autonomous agents, and question-answering services.

スキルを見る