MCP HubMCP Hub
スキル一覧に戻る

Convex Agents Threads

Sstobo
更新日 Today
90 閲覧
5
5
GitHubで表示
コミュニケーションdata

について

このスキルは、マルチターン会話を線形の履歴として整理するために、会話スレッドを管理します。スレッドの作成、ユーザーごとの履歴管理、スレッドメタデータの処理を可能にします。ユーザーやコンテキスト別に会話を整理し、スレッド内のメッセージ履歴をクエリする必要がある場合にご利用ください。

クイックインストール

Claude Code

推奨
プラグインコマンド推奨
/plugin add https://github.com/Sstobo/convex-skills
Git クローン代替
git clone https://github.com/Sstobo/convex-skills.git ~/.claude/skills/Convex Agents Threads

このコマンドをClaude Codeにコピー&ペーストしてスキルをインストールします

ドキュメント

Purpose

Threads group related messages into organized, linear conversation histories. Every message in the Agent component belongs to a thread.

When to Use This Skill

  • Creating new conversations for users
  • Managing conversation history and metadata
  • Continuing existing conversations
  • Querying message history within a thread
  • Organizing conversations by user or context
  • Cleaning up old or completed conversations

Create a Thread

import { createThread } from "@convex-dev/agent";

export const startNewThread = mutation({
  args: { userId: v.string() },
  handler: async (ctx, { userId }) => {
    const threadId = await createThread(ctx, components.agent, {
      userId,
      title: "New Conversation",
      summary: "Conversation summary",
    });
    return { threadId };
  },
});

Continue a Thread (Actions Only)

In actions, get a thread object:

export const continueConversation = action({
  args: { threadId: v.string(), prompt: v.string() },
  handler: async (ctx, { threadId, prompt }) => {
    const { thread } = await myAgent.continueThread(ctx, { threadId });

    const metadata = thread.getMetadata();
    const response = await thread.generateText({ prompt });

    return response.text;
  },
});

List Threads for a User

export const getUserThreads = query({
  args: { userId: v.string(), paginationOpts: paginationOptsValidator },
  handler: async (ctx, { userId, paginationOpts }) => {
    return await ctx.runQuery(
      components.agent.threads.listThreadsByUserId,
      { userId, paginationOpts }
    );
  },
});

Delete Threads

// Async deletion (non-blocking)
await myAgent.deleteThreadAsync(ctx, { threadId });

// Sync deletion (atomic)
await myAgent.deleteThreadSync(ctx, { threadId });

// Delete all for user
await ctx.runMutation(components.agent.users.deleteAllForUserId, { userId });

Key Principles

  • User association: Threads associated with userId
  • Metadata: Use title and summary for organization
  • Message ordering: Messages within thread maintain order
  • Async vs sync: Use async for non-blocking, sync for atomic ops

Next Steps

  • See messages for saving and retrieving messages
  • See fundamentals for basic agent setup

GitHub リポジトリ

Sstobo/convex-skills
パス: convex-agents-threads

関連スキル

content-collections

メタ

This skill provides a production-tested setup for Content Collections, a TypeScript-first tool that transforms Markdown/MDX files into type-safe data collections with Zod validation. Use it when building blogs, documentation sites, or content-heavy Vite + React applications to ensure type safety and automatic content validation. It covers everything from Vite plugin configuration and MDX compilation to deployment optimization and schema validation.

スキルを見る

polymarket

メタ

This skill enables developers to build applications with the Polymarket prediction markets platform, including API integration for trading and market data. It also provides real-time data streaming via WebSocket to monitor live trades and market activity. Use it for implementing trading strategies or creating tools that process live market updates.

スキルを見る

hybrid-cloud-networking

メタ

This skill configures secure hybrid cloud networking between on-premises infrastructure and cloud platforms like AWS, Azure, and GCP. Use it when connecting data centers to the cloud, building hybrid architectures, or implementing secure cross-premises connectivity. It supports key capabilities such as VPNs and dedicated connections like AWS Direct Connect for high-performance, reliable setups.

スキルを見る

llamaindex

メタ

LlamaIndex is a data framework for building RAG-powered LLM applications, specializing in document ingestion, indexing, and querying. It provides key features like vector indices, query engines, and agents, and supports over 300 data connectors. Use it for document Q&A, chatbots, and knowledge retrieval when building data-centric applications.

スキルを見る