ReasoningBank Intelligence
について
このスキルは、AIエージェントが経験を記録し、パターンを認識し、時間をかけて戦略を最適化することで、適応学習を実装できるようにします。継続的な改善を必要とする自己学習エージェントやメタ認知システムを構築する際にご利用ください。AgentDBなどの統合機能を通じて、持続的な学習能力を提供します。
クイックインストール
Claude Code
推奨/plugin add https://github.com/proffesor-for-testing/agentic-qegit clone https://github.com/proffesor-for-testing/agentic-qe.git ~/.claude/skills/ReasoningBank IntelligenceこのコマンドをClaude Codeにコピー&ペーストしてスキルをインストールします
ドキュメント
ReasoningBank Intelligence
What This Skill Does
Implements ReasoningBank's adaptive learning system for AI agents to learn from experience, recognize patterns, and optimize strategies over time. Enables meta-cognitive capabilities and continuous improvement.
Prerequisites
- agentic-flow v1.5.11+
- AgentDB v1.0.4+ (for persistence)
- Node.js 18+
Quick Start
import { ReasoningBank } from 'agentic-flow/reasoningbank';
// Initialize ReasoningBank
const rb = new ReasoningBank({
persist: true,
learningRate: 0.1,
adapter: 'agentdb' // Use AgentDB for storage
});
// Record task outcome
await rb.recordExperience({
task: 'code_review',
approach: 'static_analysis_first',
outcome: {
success: true,
metrics: {
bugs_found: 5,
time_taken: 120,
false_positives: 1
}
},
context: {
language: 'typescript',
complexity: 'medium'
}
});
// Get optimal strategy
const strategy = await rb.recommendStrategy('code_review', {
language: 'typescript',
complexity: 'high'
});
Core Features
1. Pattern Recognition
// Learn patterns from data
await rb.learnPattern({
pattern: 'api_errors_increase_after_deploy',
triggers: ['deployment', 'traffic_spike'],
actions: ['rollback', 'scale_up'],
confidence: 0.85
});
// Match patterns
const matches = await rb.matchPatterns(currentSituation);
2. Strategy Optimization
// Compare strategies
const comparison = await rb.compareStrategies('bug_fixing', [
'tdd_approach',
'debug_first',
'reproduce_then_fix'
]);
// Get best strategy
const best = comparison.strategies[0];
console.log(`Best: ${best.name} (score: ${best.score})`);
3. Continuous Learning
// Enable auto-learning from all tasks
await rb.enableAutoLearning({
threshold: 0.7, // Only learn from high-confidence outcomes
updateFrequency: 100 // Update models every 100 experiences
});
Advanced Usage
Meta-Learning
// Learn about learning
await rb.metaLearn({
observation: 'parallel_execution_faster_for_independent_tasks',
confidence: 0.95,
applicability: {
task_types: ['batch_processing', 'data_transformation'],
conditions: ['tasks_independent', 'io_bound']
}
});
Transfer Learning
// Apply knowledge from one domain to another
await rb.transferKnowledge({
from: 'code_review_javascript',
to: 'code_review_typescript',
similarity: 0.8
});
Adaptive Agents
// Create self-improving agent
class AdaptiveAgent {
async execute(task: Task) {
// Get optimal strategy
const strategy = await rb.recommendStrategy(task.type, task.context);
// Execute with strategy
const result = await this.executeWithStrategy(task, strategy);
// Learn from outcome
await rb.recordExperience({
task: task.type,
approach: strategy.name,
outcome: result,
context: task.context
});
return result;
}
}
Integration with AgentDB
// Persist ReasoningBank data
await rb.configure({
storage: {
type: 'agentdb',
options: {
database: './reasoning-bank.db',
enableVectorSearch: true
}
}
});
// Query learned patterns
const patterns = await rb.query({
category: 'optimization',
minConfidence: 0.8,
timeRange: { last: '30d' }
});
Performance Metrics
// Track learning effectiveness
const metrics = await rb.getMetrics();
console.log(`
Total Experiences: ${metrics.totalExperiences}
Patterns Learned: ${metrics.patternsLearned}
Strategy Success Rate: ${metrics.strategySuccessRate}
Improvement Over Time: ${metrics.improvement}
`);
Best Practices
- Record consistently: Log all task outcomes, not just successes
- Provide context: Rich context improves pattern matching
- Set thresholds: Filter low-confidence learnings
- Review periodically: Audit learned patterns for quality
- Use vector search: Enable semantic pattern matching
Troubleshooting
Issue: Poor recommendations
Solution: Ensure sufficient training data (100+ experiences per task type)
Issue: Slow pattern matching
Solution: Enable vector indexing in AgentDB
Issue: Memory growing large
Solution: Set TTL for old experiences or enable pruning
Learn More
- ReasoningBank Guide: agentic-flow/src/reasoningbank/README.md
- AgentDB Integration: packages/agentdb/docs/reasoningbank.md
- Pattern Learning: docs/reasoning/patterns.md
GitHub リポジトリ
関連スキル
content-collections
メタThis skill provides a production-tested setup for Content Collections, a TypeScript-first tool that transforms Markdown/MDX files into type-safe data collections with Zod validation. Use it when building blogs, documentation sites, or content-heavy Vite + React applications to ensure type safety and automatic content validation. It covers everything from Vite plugin configuration and MDX compilation to deployment optimization and schema validation.
creating-opencode-plugins
メタThis skill provides the structure and API specifications for creating OpenCode plugins that hook into 25+ event types like commands, files, and LSP operations. It offers implementation patterns for JavaScript/TypeScript modules that intercept and extend the AI assistant's lifecycle. Use it when you need to build event-driven plugins for monitoring, custom handling, or extending OpenCode's capabilities.
sglang
メタSGLang is a high-performance LLM serving framework that specializes in fast, structured generation for JSON, regex, and agentic workflows using its RadixAttention prefix caching. It delivers significantly faster inference, especially for tasks with repeated prefixes, making it ideal for complex, structured outputs and multi-turn conversations. Choose SGLang over alternatives like vLLM when you need constrained decoding or are building applications with extensive prefix sharing.
polymarket
メタThis skill enables developers to build applications with the Polymarket prediction markets platform, including API integration for trading and market data. It also provides real-time data streaming via WebSocket to monitor live trades and market activity. Use it for implementing trading strategies or creating tools that process live market updates.
