MCP HubMCP Hub
スキル一覧に戻る

context-audit

majiayu000
更新日 Yesterday
22 閲覧
58
9
58
GitHubで表示
その他ai

について

コンテキスト監査スキルは、CLAUDE.mdコンテキストファイルに対して包括的な品質チェックを実行し、構造、効率性、標準準拠を検証します。トークン最適化の分析、設計ドキュメント参照の確認、優先順位付けされた推奨事項を含む詳細な監査レポートの生成を行います。開発者は、リリース準備時、コンテキスト効率の確保時、または徹底的な品質検証を実施する際に本スキルを利用すべきです。

クイックインストール

Claude Code

推奨
プラグインコマンド推奨
/plugin add https://github.com/majiayu000/claude-skill-registry
Git クローン代替
git clone https://github.com/majiayu000/claude-skill-registry.git ~/.claude/skills/context-audit

このコマンドをClaude Codeにコピー&ペーストしてスキルをインストールします

ドキュメント

LLM Context Comprehensive Audit

Performs deep quality audits of CLAUDE.md context files, checking structure, content quality, efficiency, design doc references, and compliance with standards.

Overview

This skill provides comprehensive quality auditing for LLM context files by running all validation checks, analyzing content efficiency, verifying design doc pointers, checking line limits, and generating detailed audit reports with prioritized recommendations.

Quick Start

Audit all context files:

/context-audit

Audit specific file:

/context-audit CLAUDE.md

Audit package context:

/context-audit pkgs/effect-type-registry/CLAUDE.md

Quick audit (non-strict):

/context-audit --strict=false

Parameters

Optional

  • target: Path to CLAUDE.md file or "all" (default: all)
  • strict: Enable strict mode with additional checks (default: true)
  • check-refs: Validate design doc references exist (default: true)
  • output: Output file path for audit report

Workflow

High-level audit process:

  1. Parse parameters to determine audit scope and strictness
  2. Load design.config.json to get quality standards (line limits, etc.)
  3. Discover CLAUDE.md files using Glob (root + package-level)
  4. Run validation checks (structure, formatting, markdown quality)
  5. Analyze content quality (efficiency, organization, token usage)
  6. Check design doc pointers (existence, validity, coverage)
  7. Verify line limits (root: 500, child: 300 from config)
  8. Calculate health scores (file, package, overall)
  9. Identify issues by severity (critical, high, medium, low)
  10. Generate recommendations prioritized by impact
  11. Output audit report with actionable improvements

Instructions

IMPORTANT: Follow the detailed step-by-step instructions in instructions.md to perform the audit correctly.

For usage examples and common scenarios, see examples.md.

Output Format

The audit generates a structured report with:

Summary Section

  • Total files audited
  • Overall health score (0-100)
  • Critical/high/medium/low issue counts
  • Pass/fail status

File-Level Details

For each CLAUDE.md file:

  • File path and role (root vs child)
  • Line count vs limit
  • Structure validation results
  • Content quality score
  • Design doc pointer status
  • Specific issues found

Recommendations

Prioritized list of improvements:

  1. Critical issues (must fix)
  2. High priority (should fix)
  3. Medium priority (nice to have)
  4. Low priority (optional)

Quality Metrics

  • Average line count
  • Design doc pointer coverage
  • Content efficiency score
  • Token optimization score

Success Criteria

The audit passes when:

  • All files under line limits (root: 500, child: 300)
  • No critical or high severity issues
  • All design doc pointers valid and exist
  • Content is lean imperative instructions (not implementation details)
  • Proper separation between root and child contexts

Related Skills

  • /context-validate - Basic structure and formatting validation
  • /context-review - Quality and efficiency review
  • /context-update - Update context files based on audit findings
  • /context-split - Split large files that exceed limits
  • /design-audit - Similar comprehensive audit for design docs

GitHub リポジトリ

majiayu000/claude-skill-registry
パス: skills/context-audit

関連スキル

evaluating-llms-harness

テスト

This Claude Skill runs the lm-evaluation-harness to benchmark LLMs across 60+ standardized academic tasks like MMLU and GSM8K. It's designed for developers to compare model quality, track training progress, or report academic results. The tool supports various backends including HuggingFace and vLLM models.

スキルを見る

sglang

メタ

SGLang is a high-performance LLM serving framework that specializes in fast, structured generation for JSON, regex, and agentic workflows using its RadixAttention prefix caching. It delivers significantly faster inference, especially for tasks with repeated prefixes, making it ideal for complex, structured outputs and multi-turn conversations. Choose SGLang over alternatives like vLLM when you need constrained decoding or are building applications with extensive prefix sharing.

スキルを見る

cloudflare-turnstile

メタ

This skill provides comprehensive guidance for implementing Cloudflare Turnstile as a CAPTCHA-alternative bot protection system. It covers integration for forms, login pages, API endpoints, and frameworks like React/Next.js/Hono, while handling invisible challenges that maintain user experience. Use it when migrating from reCAPTCHA, debugging error codes, or implementing token validation and E2E tests.

スキルを見る

langchain

メタ

LangChain is a framework for building LLM applications using agents, chains, and RAG pipelines. It supports multiple LLM providers, offers 500+ integrations, and includes features like tool calling and memory management. Use it for rapid prototyping and deploying production systems like chatbots, autonomous agents, and question-answering services.

スキルを見る