MCP HubMCP Hub
スキル一覧に戻る

patent-reviewer

RobThePCGuy
更新日 Yesterday
111 閲覧
2
2
GitHubで表示
デザインaidesign

について

このスキルは、米国特許商標庁(USPTO)のMPEPガイドラインに基づく実用特許出願書類の自動審査を提供し、開発者がコンプライアンスの確認、クレーム・明細書・形式要件の分析を行えるようにします。特許データベースとUSPTO規則を統合し、包括的な特許分析および作成支援を実現します。USPTOコンプライアンスチェックや特許作成ワークフローを必要とする特許関連アプリケーションの構築時にご利用ください。

クイックインストール

Claude Code

推奨
プラグインコマンド推奨
/plugin add https://github.com/RobThePCGuy/Claude-Patent-Creator
Git クローン代替
git clone https://github.com/RobThePCGuy/Claude-Patent-Creator.git ~/.claude/skills/patent-reviewer

このコマンドをClaude Codeにコピー&ペーストしてスキルをインストールします

ドキュメント

Patent Creator Skill

Comprehensive patent creation system with USPTO MPEP, prior art databases, and USPTO API for complete patent application analysis.

When to Use

Review patent applications for USPTO compliance, analyze claims/specifications/formalities, integrate prior art, get USPTO guidance, assist with patent drafting.

Quick Review Commands

/full-review              # Complete parallel review
/review-claims            # 35 USC 112b compliance
/review-specification     # 35 USC 112a compliance
/review-formalities       # MPEP 608 compliance
/create-patent            # New patent application

Available MCP Tools

MPEP & Regulations

  • search_mpep - Search MPEP, 35 USC, 37 CFR
  • get_mpep_section - Get complete MPEP section by number

Patent Search

  • search_patents_bigquery - Search 76M+ patents
  • get_patent_bigquery - Get full patent details
  • search_patents_by_cpc_bigquery - Search by CPC classification

Patent Analysis

  • review_patent_claims - Analyze claims for 35 USC 112(b)
  • review_specification - Check specification support (112a)
  • check_formalities - Verify MPEP 608 compliance

Diagram Generation

  • render_diagram - Create diagrams from DOT code
  • create_flowchart - Generate patent-style flowcharts
  • create_block_diagram - Create system block diagrams
  • add_diagram_references - Add reference numbers

Review Workflows

Complete Patent Creation Review (/full-review)

Runs all analyzers in parallel for comprehensive analysis:

Output:

  • All compliance issues across components
  • Severity ratings (critical/important/minor)
  • Specific MPEP citations
  • Actionable fix recommendations
  • Prioritized remediation plan

Claims-Only Review (/review-claims)

35 USC 112(b) Compliance:

  • Antecedent basis
  • Definiteness
  • Claim structure
  • Subjective terms
  • Means-plus-function compliance

Specification Review (/review-specification)

35 USC 112(a) Requirements:

  • Written description
  • Enablement
  • Best mode
  • Claim support

Formalities Check (/review-formalities)

MPEP 608 Compliance:

  • Abstract (50-150 words)
  • Title (<=500 characters)
  • Drawing references
  • Required sections

Patent Creation Workflow (/create-patent)

Complete 6-phase patent drafting (55-80 minutes):

  1. Discovery (10-15 min) - Gather invention details
  2. Technology Analysis (5 min) - Assess patentability (101, 102, 103)
  3. Specification Drafting (15-20 min) - Background, summary, detailed description
  4. Claims Drafting (10-15 min) - Independent + dependent claims
  5. Diagrams & Abstract (10-15 min) - Block diagrams, flowcharts, abstract
  6. Automatic Validation (5-10 min) - Runs /full-review, provides fixes

Output: USPTO-ready filing package with diagrams

MPEP Research

# General search
search_mpep("claim definiteness 112(b)", top_k=5)

# Filtered by source
search_mpep("enablement", source_filter="35_USC")
search_mpep("abstract", source_filter="MPEP")

# Get specific section
get_mpep_section("2173")  # Claim definiteness

Common MPEP Sections

SectionTopic
608Formalities (abstract, title, drawings)
2100Patentability requirements
2163Guidelines for 35 USC 112(a)
2173Claim definiteness (35 USC 112(b))

Prior Art Integration

# BigQuery search (76M+ patents)
search_patents_bigquery(
    query="neural network training",
    country="US",
    start_year=2020,
    limit=20
)

# CPC classification search
search_patents_by_cpc_bigquery(cpc_code="G06N3", limit=50)

Integrate findings:

  1. Cite in Background section
  2. Emphasize distinctions in Summary
  3. Explain advantages in Detailed Description
  4. Draft claims to avoid/distinguish
  5. List in IDS

Best Practices

Before Review:

  • Prepare complete application
  • Run /full-review
  • Address critical issues first

During Review:

  • Focus on critical issues (antecedent basis, claim support, definiteness)
  • Use MPEP citations
  • Iterate until compliant

After Review:

  • Document compliance
  • Final /full-review validation
  • Prepare filing package

Common Review Findings

Critical (Must Fix):

  • Missing antecedent basis
  • Claim elements unsupported
  • Abstract exceeds 150 words
  • Indefinite language

Important (Should Fix):

  • Subjective terms without criteria
  • Weak enablement
  • Inconsistent terminology

Minor (Optional):

  • Add example embodiments
  • Strengthen best mode
  • Improve claim scope

Quick Reference

Key Compliance Checks

RequirementCitationTool
Antecedent basis35 USC 112(b)review_patent_claims
Written description35 USC 112(a)review_specification
Enablement35 USC 112(a)review_specification
Abstract lengthMPEP 608.01(b)check_formalities
Title formatMPEP 606check_formalities

GitHub リポジトリ

RobThePCGuy/Claude-Patent-Creator
パス: skills/patent-reviewer
bigqueryclaude-codeclaude-code-pluginfaissmcp-servermpep

関連スキル

content-collections

メタ

This skill provides a production-tested setup for Content Collections, a TypeScript-first tool that transforms Markdown/MDX files into type-safe data collections with Zod validation. Use it when building blogs, documentation sites, or content-heavy Vite + React applications to ensure type safety and automatic content validation. It covers everything from Vite plugin configuration and MDX compilation to deployment optimization and schema validation.

スキルを見る

creating-opencode-plugins

メタ

This skill provides the structure and API specifications for creating OpenCode plugins that hook into 25+ event types like commands, files, and LSP operations. It offers implementation patterns for JavaScript/TypeScript modules that intercept and extend the AI assistant's lifecycle. Use it when you need to build event-driven plugins for monitoring, custom handling, or extending OpenCode's capabilities.

スキルを見る

evaluating-llms-harness

テスト

This Claude Skill runs the lm-evaluation-harness to benchmark LLMs across 60+ standardized academic tasks like MMLU and GSM8K. It's designed for developers to compare model quality, track training progress, or report academic results. The tool supports various backends including HuggingFace and vLLM models.

スキルを見る

sglang

メタ

SGLang is a high-performance LLM serving framework that specializes in fast, structured generation for JSON, regex, and agentic workflows using its RadixAttention prefix caching. It delivers significantly faster inference, especially for tasks with repeated prefixes, making it ideal for complex, structured outputs and multi-turn conversations. Choose SGLang over alternatives like vLLM when you need constrained decoding or are building applications with extensive prefix sharing.

スキルを見る