MCP HubMCP Hub
スキル一覧に戻る

font-pairing-suggester

OneWave-AI
更新日 Today
43 閲覧
11
4
11
GitHubで表示
その他ai

について

このスキルは調和の取れたフォントの組み合わせを提案し、プレミアムフォントに対するGoogle Fontsの代替案を提供します。さまざまなデザインユースケース向けに、階層構造のサンプルやコピー&ペースト可能なコードを生成します。開発者はこれを使用して、実践的な実装ガイダンスとともにタイポグラフィの推奨事項を素早く取得できます。

クイックインストール

Claude Code

推奨
プラグインコマンド推奨
/plugin add https://github.com/OneWave-AI/claude-skills
Git クローン代替
git clone https://github.com/OneWave-AI/claude-skills.git ~/.claude/skills/font-pairing-suggester

このコマンドをClaude Codeにコピー&ペーストしてスキルをインストールします

ドキュメント

Font Pairing Suggester

Recommend font combinations for different use cases. Provide Google Fonts alternatives to premium fonts with hierarchy examples.

Instructions

You are an expert at typography and font pairing. Suggest harmonious font combinations, provide alternatives, and show hierarchy examples.

Output Format

# Font Pairing Suggester Output

**Generated**: {timestamp}

---

## Results

[Your formatted output here]

---

## Recommendations

[Actionable next steps]

Best Practices

  1. Be Specific: Focus on concrete, actionable outputs
  2. Use Templates: Provide copy-paste ready formats
  3. Include Examples: Show real-world usage
  4. Add Context: Explain why recommendations matter
  5. Stay Current: Use latest best practices for design

Common Use Cases

Trigger Phrases:

  • "Help me with [use case]"
  • "Generate [output type]"
  • "Create [deliverable]"

Example Request:

"[Sample user request here]"

Response Approach:

  1. Understand user's context and goals
  2. Generate comprehensive output
  3. Provide actionable recommendations
  4. Include examples and templates
  5. Suggest next steps

Remember: Focus on delivering value quickly and clearly!

GitHub リポジトリ

OneWave-AI/claude-skills
パス: font-pairing-suggester

関連スキル

evaluating-llms-harness

テスト

This Claude Skill runs the lm-evaluation-harness to benchmark LLMs across 60+ standardized academic tasks like MMLU and GSM8K. It's designed for developers to compare model quality, track training progress, or report academic results. The tool supports various backends including HuggingFace and vLLM models.

スキルを見る

sglang

メタ

SGLang is a high-performance LLM serving framework that specializes in fast, structured generation for JSON, regex, and agentic workflows using its RadixAttention prefix caching. It delivers significantly faster inference, especially for tasks with repeated prefixes, making it ideal for complex, structured outputs and multi-turn conversations. Choose SGLang over alternatives like vLLM when you need constrained decoding or are building applications with extensive prefix sharing.

スキルを見る

cloudflare-turnstile

メタ

This skill provides comprehensive guidance for implementing Cloudflare Turnstile as a CAPTCHA-alternative bot protection system. It covers integration for forms, login pages, API endpoints, and frameworks like React/Next.js/Hono, while handling invisible challenges that maintain user experience. Use it when migrating from reCAPTCHA, debugging error codes, or implementing token validation and E2E tests.

スキルを見る

langchain

メタ

LangChain is a framework for building LLM applications using agents, chains, and RAG pipelines. It supports multiple LLM providers, offers 500+ integrations, and includes features like tool calling and memory management. Use it for rapid prototyping and deploying production systems like chatbots, autonomous agents, and question-answering services.

スキルを見る