MCP HubMCP Hub
スキル一覧に戻る

analyzing-text-sentiment

jeremylongshore
更新日 Today
87 閲覧
712
74
712
GitHubで表示
メタwordaidata

について

このスキルは、Claudeがテキストの感情分析を実行し、感情的なトーンをポジティブ、ネガティブ、またはニュートラルに分類することを可能にします。レビューやソーシャルメディア投稿などのコンテンツに対する意見分析や感情検出のリクエストによって発動します。開発者はこれを使用して、顧客フィードバックやアンケート回答を迅速に分析できます。

クイックインストール

Claude Code

推奨
プラグインコマンド推奨
/plugin add https://github.com/jeremylongshore/claude-code-plugins-plus
Git クローン代替
git clone https://github.com/jeremylongshore/claude-code-plugins-plus.git ~/.claude/skills/analyzing-text-sentiment

このコマンドをClaude Codeにコピー&ペーストしてスキルをインストールします

ドキュメント

Overview

This skill empowers Claude to perform sentiment analysis on text, providing insights into the emotional content and polarity of the provided data. By leveraging AI/ML techniques, it helps understand public opinion, customer feedback, and overall emotional tone in written communication.

How It Works

  1. Text Input: The skill receives text data as input from the user.
  2. Sentiment Analysis: The skill processes the text using a pre-trained sentiment analysis model to determine the sentiment polarity (positive, negative, or neutral).
  3. Result Output: The skill provides a sentiment score and classification, indicating the overall sentiment expressed in the text.

When to Use This Skill

This skill activates when you need to:

  • Determine the overall sentiment of customer reviews.
  • Analyze the emotional tone of social media posts.
  • Gauge public opinion on a particular topic.
  • Identify positive and negative feedback in survey responses.

Examples

Example 1: Analyzing Customer Reviews

User request: "Analyze the sentiment of these customer reviews: 'The product is amazing!', 'The service was terrible.', 'It was okay.'"

The skill will:

  1. Process the provided customer reviews.
  2. Classify each review as positive, negative, or neutral and provide sentiment scores.

Example 2: Monitoring Social Media Sentiment

User request: "Perform sentiment analysis on the following tweet: 'I love this new feature!'"

The skill will:

  1. Analyze the provided tweet.
  2. Identify the sentiment as positive and provide a corresponding sentiment score.

Best Practices

  • Data Quality: Ensure the input text is clear and free from ambiguous language for accurate sentiment analysis.
  • Context Awareness: Consider the context of the text when interpreting sentiment scores, as sarcasm or irony can affect results.
  • Model Selection: Use appropriate sentiment analysis models based on the type of text being analyzed (e.g., social media, customer reviews).

Integration

This skill can be integrated with other Claude Code plugins to automate workflows, such as summarizing feedback alongside sentiment scores or triggering actions based on sentiment polarity (e.g., escalating negative feedback).

GitHub リポジトリ

jeremylongshore/claude-code-plugins-plus
パス: backups/skills-batch-20251204-000554/plugins/ai-ml/sentiment-analysis-tool/skills/sentiment-analysis-tool
aiautomationclaude-codedevopsmarketplacemcp

関連スキル

content-collections

メタ

This skill provides a production-tested setup for Content Collections, a TypeScript-first tool that transforms Markdown/MDX files into type-safe data collections with Zod validation. Use it when building blogs, documentation sites, or content-heavy Vite + React applications to ensure type safety and automatic content validation. It covers everything from Vite plugin configuration and MDX compilation to deployment optimization and schema validation.

スキルを見る

evaluating-llms-harness

テスト

This Claude Skill runs the lm-evaluation-harness to benchmark LLMs across 60+ standardized academic tasks like MMLU and GSM8K. It's designed for developers to compare model quality, track training progress, or report academic results. The tool supports various backends including HuggingFace and vLLM models.

スキルを見る

sglang

メタ

SGLang is a high-performance LLM serving framework that specializes in fast, structured generation for JSON, regex, and agentic workflows using its RadixAttention prefix caching. It delivers significantly faster inference, especially for tasks with repeated prefixes, making it ideal for complex, structured outputs and multi-turn conversations. Choose SGLang over alternatives like vLLM when you need constrained decoding or are building applications with extensive prefix sharing.

スキルを見る

polymarket

メタ

This skill enables developers to build applications with the Polymarket prediction markets platform, including API integration for trading and market data. It also provides real-time data streaming via WebSocket to monitor live trades and market activity. Use it for implementing trading strategies or creating tools that process live market updates.

スキルを見る