MCP HubMCP Hub
スキル一覧に戻る

convex-doc

majiayu000
更新日 Today
11 閲覧
58
9
58
GitHubで表示
デザインwordaidesign

について

このスキルは、Convexのドキュメントルール(convex.mdcファイル)を更新する際に、コンテンツガイドラインと構造パターンを取得するために使用します。コンテキスト最適化の原則を提供し、使用方法とセットアップのドキュメント間の分離を徹底します。開発者は、Convexのドキュメントファイル全体で一貫性を保つためにこれを呼び出すべきです。

クイックインストール

Claude Code

推奨
プラグインコマンド推奨
/plugin add https://github.com/majiayu000/claude-skill-registry
Git クローン代替
git clone https://github.com/majiayu000/claude-skill-registry.git ~/.claude/skills/convex-doc

このコマンドをClaude Codeにコピー&ペーストしてスキルをインストールします

ドキュメント

@.claude/skills/convex-doc/convex-doc.mdc

GitHub リポジトリ

majiayu000/claude-skill-registry
パス: skills/convex-doc

関連スキル

content-collections

メタ

This skill provides a production-tested setup for Content Collections, a TypeScript-first tool that transforms Markdown/MDX files into type-safe data collections with Zod validation. Use it when building blogs, documentation sites, or content-heavy Vite + React applications to ensure type safety and automatic content validation. It covers everything from Vite plugin configuration and MDX compilation to deployment optimization and schema validation.

スキルを見る

creating-opencode-plugins

メタ

This skill provides the structure and API specifications for creating OpenCode plugins that hook into 25+ event types like commands, files, and LSP operations. It offers implementation patterns for JavaScript/TypeScript modules that intercept and extend the AI assistant's lifecycle. Use it when you need to build event-driven plugins for monitoring, custom handling, or extending OpenCode's capabilities.

スキルを見る

evaluating-llms-harness

テスト

This Claude Skill runs the lm-evaluation-harness to benchmark LLMs across 60+ standardized academic tasks like MMLU and GSM8K. It's designed for developers to compare model quality, track training progress, or report academic results. The tool supports various backends including HuggingFace and vLLM models.

スキルを見る

sglang

メタ

SGLang is a high-performance LLM serving framework that specializes in fast, structured generation for JSON, regex, and agentic workflows using its RadixAttention prefix caching. It delivers significantly faster inference, especially for tasks with repeated prefixes, making it ideal for complex, structured outputs and multi-turn conversations. Choose SGLang over alternatives like vLLM when you need constrained decoding or are building applications with extensive prefix sharing.

スキルを見る