slo-implementation
について
このClaudeスキルは、開発者がサービスレベル指標(SLI)とサービスレベル目標(SLO)をエラーバジェットとアラート機能とともに定義・実装することを支援します。信頼性目標の設定、SREプラクティスの導入、またはサービスパフォーマンスの測定を行い、信頼性と開発速度のバランスを取る際にご利用ください。
クイックインストール
Claude Code
推奨/plugin add https://github.com/camoneart/claude-codegit clone https://github.com/camoneart/claude-code.git ~/.claude/skills/slo-implementationこのコマンドをClaude Codeにコピー&ペーストしてスキルをインストールします
ドキュメント
SLO Implementation
Framework for defining and implementing Service Level Indicators (SLIs), Service Level Objectives (SLOs), and error budgets.
Purpose
Implement measurable reliability targets using SLIs, SLOs, and error budgets to balance reliability with innovation velocity.
When to Use
- Define service reliability targets
- Measure user-perceived reliability
- Implement error budgets
- Create SLO-based alerts
- Track reliability goals
SLI/SLO/SLA Hierarchy
SLA (Service Level Agreement)
↓ Contract with customers
SLO (Service Level Objective)
↓ Internal reliability target
SLI (Service Level Indicator)
↓ Actual measurement
Defining SLIs
Common SLI Types
1. Availability SLI
# Successful requests / Total requests
sum(rate(http_requests_total{status!~"5.."}[28d]))
/
sum(rate(http_requests_total[28d]))
2. Latency SLI
# Requests below latency threshold / Total requests
sum(rate(http_request_duration_seconds_bucket{le="0.5"}[28d]))
/
sum(rate(http_request_duration_seconds_count[28d]))
3. Durability SLI
# Successful writes / Total writes
sum(storage_writes_successful_total)
/
sum(storage_writes_total)
Reference: See references/slo-definitions.md
Setting SLO Targets
Availability SLO Examples
| SLO % | Downtime/Month | Downtime/Year |
|---|---|---|
| 99% | 7.2 hours | 3.65 days |
| 99.9% | 43.2 minutes | 8.76 hours |
| 99.95% | 21.6 minutes | 4.38 hours |
| 99.99% | 4.32 minutes | 52.56 minutes |
Choose Appropriate SLOs
Consider:
- User expectations
- Business requirements
- Current performance
- Cost of reliability
- Competitor benchmarks
Example SLOs:
slos:
- name: api_availability
target: 99.9
window: 28d
sli: |
sum(rate(http_requests_total{status!~"5.."}[28d]))
/
sum(rate(http_requests_total[28d]))
- name: api_latency_p95
target: 99
window: 28d
sli: |
sum(rate(http_request_duration_seconds_bucket{le="0.5"}[28d]))
/
sum(rate(http_request_duration_seconds_count[28d]))
Error Budget Calculation
Error Budget Formula
Error Budget = 1 - SLO Target
Example:
- SLO: 99.9% availability
- Error Budget: 0.1% = 43.2 minutes/month
- Current Error: 0.05% = 21.6 minutes/month
- Remaining Budget: 50%
Error Budget Policy
error_budget_policy:
- remaining_budget: 100%
action: Normal development velocity
- remaining_budget: 50%
action: Consider postponing risky changes
- remaining_budget: 10%
action: Freeze non-critical changes
- remaining_budget: 0%
action: Feature freeze, focus on reliability
Reference: See references/error-budget.md
SLO Implementation
Prometheus Recording Rules
# SLI Recording Rules
groups:
- name: sli_rules
interval: 30s
rules:
# Availability SLI
- record: sli:http_availability:ratio
expr: |
sum(rate(http_requests_total{status!~"5.."}[28d]))
/
sum(rate(http_requests_total[28d]))
# Latency SLI (requests < 500ms)
- record: sli:http_latency:ratio
expr: |
sum(rate(http_request_duration_seconds_bucket{le="0.5"}[28d]))
/
sum(rate(http_request_duration_seconds_count[28d]))
- name: slo_rules
interval: 5m
rules:
# SLO compliance (1 = meeting SLO, 0 = violating)
- record: slo:http_availability:compliance
expr: sli:http_availability:ratio >= bool 0.999
- record: slo:http_latency:compliance
expr: sli:http_latency:ratio >= bool 0.99
# Error budget remaining (percentage)
- record: slo:http_availability:error_budget_remaining
expr: |
(sli:http_availability:ratio - 0.999) / (1 - 0.999) * 100
# Error budget burn rate
- record: slo:http_availability:burn_rate_5m
expr: |
(1 - (
sum(rate(http_requests_total{status!~"5.."}[5m]))
/
sum(rate(http_requests_total[5m]))
)) / (1 - 0.999)
SLO Alerting Rules
groups:
- name: slo_alerts
interval: 1m
rules:
# Fast burn: 14.4x rate, 1 hour window
# Consumes 2% error budget in 1 hour
- alert: SLOErrorBudgetBurnFast
expr: |
slo:http_availability:burn_rate_1h > 14.4
and
slo:http_availability:burn_rate_5m > 14.4
for: 2m
labels:
severity: critical
annotations:
summary: "Fast error budget burn detected"
description: "Error budget burning at {{ $value }}x rate"
# Slow burn: 6x rate, 6 hour window
# Consumes 5% error budget in 6 hours
- alert: SLOErrorBudgetBurnSlow
expr: |
slo:http_availability:burn_rate_6h > 6
and
slo:http_availability:burn_rate_30m > 6
for: 15m
labels:
severity: warning
annotations:
summary: "Slow error budget burn detected"
description: "Error budget burning at {{ $value }}x rate"
# Error budget exhausted
- alert: SLOErrorBudgetExhausted
expr: slo:http_availability:error_budget_remaining < 0
for: 5m
labels:
severity: critical
annotations:
summary: "SLO error budget exhausted"
description: "Error budget remaining: {{ $value }}%"
SLO Dashboard
Grafana Dashboard Structure:
┌────────────────────────────────────┐
│ SLO Compliance (Current) │
│ ✓ 99.95% (Target: 99.9%) │
├────────────────────────────────────┤
│ Error Budget Remaining: 65% │
│ ████████░░ 65% │
├────────────────────────────────────┤
│ SLI Trend (28 days) │
│ [Time series graph] │
├────────────────────────────────────┤
│ Burn Rate Analysis │
│ [Burn rate by time window] │
└────────────────────────────────────┘
Example Queries:
# Current SLO compliance
sli:http_availability:ratio * 100
# Error budget remaining
slo:http_availability:error_budget_remaining
# Days until error budget exhausted (at current burn rate)
(slo:http_availability:error_budget_remaining / 100)
*
28
/
(1 - sli:http_availability:ratio) * (1 - 0.999)
Multi-Window Burn Rate Alerts
# Combination of short and long windows reduces false positives
rules:
- alert: SLOBurnRateHigh
expr: |
(
slo:http_availability:burn_rate_1h > 14.4
and
slo:http_availability:burn_rate_5m > 14.4
)
or
(
slo:http_availability:burn_rate_6h > 6
and
slo:http_availability:burn_rate_30m > 6
)
labels:
severity: critical
SLO Review Process
Weekly Review
- Current SLO compliance
- Error budget status
- Trend analysis
- Incident impact
Monthly Review
- SLO achievement
- Error budget usage
- Incident postmortems
- SLO adjustments
Quarterly Review
- SLO relevance
- Target adjustments
- Process improvements
- Tooling enhancements
Best Practices
- Start with user-facing services
- Use multiple SLIs (availability, latency, etc.)
- Set achievable SLOs (don't aim for 100%)
- Implement multi-window alerts to reduce noise
- Track error budget consistently
- Review SLOs regularly
- Document SLO decisions
- Align with business goals
- Automate SLO reporting
- Use SLOs for prioritization
Reference Files
assets/slo-template.md- SLO definition templatereferences/slo-definitions.md- SLO definition patternsreferences/error-budget.md- Error budget calculations
Related Skills
prometheus-configuration- For metric collectiongrafana-dashboards- For SLO visualization
GitHub リポジトリ
関連スキル
algorithmic-art
メタThis Claude Skill creates original algorithmic art using p5.js with seeded randomness and interactive parameters. It generates .md files for algorithmic philosophies, plus .html and .js files for interactive generative art implementations. Use it when developers need to create flow fields, particle systems, or other computational art while avoiding copyright issues.
subagent-driven-development
開発This skill executes implementation plans by dispatching a fresh subagent for each independent task, with code review between tasks. It enables fast iteration while maintaining quality gates through this review process. Use it when working on mostly independent tasks within the same session to ensure continuous progress with built-in quality checks.
executing-plans
デザインUse the executing-plans skill when you have a complete implementation plan to execute in controlled batches with review checkpoints. It loads and critically reviews the plan, then executes tasks in small batches (default 3 tasks) while reporting progress between each batch for architect review. This ensures systematic implementation with built-in quality control checkpoints.
cost-optimization
その他This Claude Skill helps developers optimize cloud costs through resource rightsizing, tagging strategies, and spending analysis. It provides a framework for reducing cloud expenses and implementing cost governance across AWS, Azure, and GCP. Use it when you need to analyze infrastructure costs, right-size resources, or meet budget constraints.
