concurrent-safe-state-machines
について
このスキルは、React 18のコンカレント機能とStrictModeの再レンダリング下でも正しさを保つ、決定論的な状態機械の設計を開発者に支援します。冪等性のあるリデューサーの実装、リプレイ耐性のある遷移、およびインターリーブされたレンダリング中のティアードリードの防止に焦点を当てています。高信頼性コンポーネントにおいて、二重呼び出しやランダム化されたスケジューリング下での状態機械の不変条件を証明する必要がある場合にご利用ください。
クイックインストール
Claude Code
推奨/plugin add https://github.com/majiayu000/claude-skill-registrygit clone https://github.com/majiayu000/claude-skill-registry.git ~/.claude/skills/concurrent-safe-state-machinesこのコマンドをClaude Codeにコピー&ペーストしてスキルをインストールします
ドキュメント
Concurrent-Safe State Machines (React 18)
Summary
Design deterministic state machines that remain correct under concurrent rendering and re-entrancy.
Key Capabilities
- Apply idempotent reducers and effect cleanup patterns.
- Model state transitions as pure functions with replay tolerance.
- Prevent torn reads during interleaved renders.
PhD-Level Challenges
- Prove invariants under double-invocation in StrictMode.
- Provide a correctness argument for side-effect isolation.
- Stress-test state transitions under randomized scheduling.
Acceptance Criteria
- Document state invariants and transition table.
- Demonstrate correctness under StrictMode double effects.
- Provide property-based tests for state machine correctness.
GitHub リポジトリ
関連スキル
content-collections
メタThis skill provides a production-tested setup for Content Collections, a TypeScript-first tool that transforms Markdown/MDX files into type-safe data collections with Zod validation. Use it when building blogs, documentation sites, or content-heavy Vite + React applications to ensure type safety and automatic content validation. It covers everything from Vite plugin configuration and MDX compilation to deployment optimization and schema validation.
creating-opencode-plugins
メタThis skill provides the structure and API specifications for creating OpenCode plugins that hook into 25+ event types like commands, files, and LSP operations. It offers implementation patterns for JavaScript/TypeScript modules that intercept and extend the AI assistant's lifecycle. Use it when you need to build event-driven plugins for monitoring, custom handling, or extending OpenCode's capabilities.
evaluating-llms-harness
テストThis Claude Skill runs the lm-evaluation-harness to benchmark LLMs across 60+ standardized academic tasks like MMLU and GSM8K. It's designed for developers to compare model quality, track training progress, or report academic results. The tool supports various backends including HuggingFace and vLLM models.
sglang
メタSGLang is a high-performance LLM serving framework that specializes in fast, structured generation for JSON, regex, and agentic workflows using its RadixAttention prefix caching. It delivers significantly faster inference, especially for tasks with repeated prefixes, making it ideal for complex, structured outputs and multi-turn conversations. Choose SGLang over alternatives like vLLM when you need constrained decoding or are building applications with extensive prefix sharing.
