MCP HubMCP Hub
スキル一覧に戻る

compliance-report-builder

majiayu000
更新日 Today
19 閲覧
58
9
58
GitHubで表示
メタdesign

について

このClaudeスキルは、SOX、GDPR、HIPAA、SOC 2などの規格に準拠したコンプライアンス文書を開発者が生成することを支援します。リスク志向の統制策、監査証跡、規制マッピングを備えたエビデンスベースのレポートを作成します。開発ワークフロー内で監査報告書やコンプライアンス文書を自動化・構造化するためにご活用ください。

クイックインストール

Claude Code

推奨
プラグインコマンド推奨
/plugin add https://github.com/majiayu000/claude-skill-registry
Git クローン代替
git clone https://github.com/majiayu000/claude-skill-registry.git ~/.claude/skills/compliance-report-builder

このコマンドをClaude Codeにコピー&ペーストしてスキルをインストールします

ドキュメント

Compliance Report Builder

Эксперт по регуляторной compliance документации и отчётности.

Основные принципы

Evidence-Based Documentation

  • Контроли должны быть связаны с конкретными артефактами
  • Audit trail с timestamps и ответственными
  • Количественные метрики для preventive и detective мер

Risk-Oriented Approach

  • Приоритизация high-risk областей
  • Mapping контролей к threat vectors
  • Документирование residual risk

Regulatory Alignment

  • Привязка требований к конкретным статьям регуляций
  • Guidance для неоднозначных стандартов
  • Compensating controls документация

Executive Summary Template

# Compliance Status Report
**Period:** Q4 2024
**Prepared:** 2024-12-10
**Classification:** Confidential

## Overall Status: 🟡 YELLOW

### Coverage Summary
| Framework | Controls | Compliant | Gaps | Coverage |
|-----------|----------|-----------|------|----------|
| SOC 2 | 85 | 79 | 6 | 93% |
| GDPR | 42 | 40 | 2 | 95% |
| ISO 27001 | 114 | 108 | 6 | 95% |

### Key Findings
| Priority | Count | Trend |
|----------|-------|-------|
| Critical | 0 | ⬇️ |
| High | 3 | ➡️ |
| Medium | 8 | ⬆️ |
| Low | 12 | ➡️ |

### Action Items
1. [CRITICAL] None
2. [HIGH] Complete MFA rollout by Jan 15
3. [HIGH] Update data retention policy
4. [HIGH] Implement logging for System X

Control Assessment Framework

Control:
  ID: AC-001
  Title: Access Control Policy
  Framework: SOC 2, ISO 27001
  Category: Security

Implementation:
  Status: Implemented
  Owner: Security Team
  Last Review: 2024-12-01

Testing:
  Method: Inspection + Inquiry
  Frequency: Quarterly
  Last Test: 2024-11-15
  Result: Effective

Evidence:
  - Policy document v2.3
  - Access review logs
  - Training completion records

Gaps:
  - None identified

Recommendations:
  - Automate quarterly access reviews

SOC 2 Trust Services

## Security (Common Criteria)

### CC1: Control Environment
| Control | Description | Status | Evidence |
|---------|-------------|--------|----------|
| CC1.1 | Board oversight | ✅ | Board minutes |
| CC1.2 | Management philosophy | ✅ | Policy docs |
| CC1.3 | Organizational structure | ✅ | Org chart |
| CC1.4 | HR practices | ✅ | HR policies |

### CC2: Communication and Information
| Control | Description | Status | Evidence |
|---------|-------------|--------|----------|
| CC2.1 | Information quality | ✅ | Data governance |
| CC2.2 | Internal communication | ✅ | Slack, email logs |
| CC2.3 | External communication | ✅ | Customer portal |

### CC3: Risk Assessment
| Control | Description | Status | Evidence |
|---------|-------------|--------|----------|
| CC3.1 | Risk identification | ✅ | Risk register |
| CC3.2 | Risk analysis | ✅ | Risk assessment |
| CC3.3 | Fraud risk | ✅ | Fraud controls |
| CC3.4 | Change management | ⚠️ | Partial automation |

GDPR Checklist

Article 30 - Records of Processing:
  - [ ] Processing purposes documented
  - [ ] Data categories listed
  - [ ] Recipient categories identified
  - [ ] Transfer safeguards documented
  - [ ] Retention periods defined
  - [ ] Security measures described

Article 13/14 - Privacy Notices:
  - [ ] Controller identity stated
  - [ ] DPO contact provided
  - [ ] Purposes explained
  - [ ] Legal basis identified
  - [ ] Rights information included
  - [ ] Complaint procedure described

Article 17 - Right to Erasure:
  - [ ] Process documented
  - [ ] Timeframes defined (30 days)
  - [ ] Exceptions listed
  - [ ] Verification procedure
  - [ ] Third-party notification

Article 33 - Breach Notification:
  - [ ] Detection procedures
  - [ ] Assessment criteria
  - [ ] 72-hour notification process
  - [ ] DPA contact established
  - [ ] Subject notification criteria

Risk Assessment Matrix

const riskMatrix = {
  likelihood: {
    rare: 1,      // < 5%
    unlikely: 2,  // 5-25%
    possible: 3,  // 25-50%
    likely: 4,    // 50-75%
    certain: 5    // > 75%
  },

  impact: {
    negligible: 1, // < $10k
    minor: 2,      // $10k-$100k
    moderate: 3,   // $100k-$1M
    major: 4,      // $1M-$10M
    severe: 5      // > $10M
  },

  calculateRisk(likelihood, impact) {
    const score = likelihood * impact;
    if (score >= 15) return 'Critical';
    if (score >= 10) return 'High';
    if (score >= 5) return 'Medium';
    return 'Low';
  }
};

Finding Classification

Critical:
  Response: 24-48 hours
  Escalation: Executive + Board
  Examples:
    - Active data breach
    - Regulatory violation with penalties
    - System-wide security failure

High:
  Response: 1-2 weeks
  Escalation: Senior Management
  Examples:
    - Missing critical controls
    - Significant gaps in coverage
    - Failed audit controls

Medium:
  Response: 30-60 days
  Escalation: Department Head
  Examples:
    - Incomplete documentation
    - Process inefficiencies
    - Minor policy violations

Low:
  Response: 90 days
  Escalation: Control Owner
  Examples:
    - Optimization opportunities
    - Documentation updates
    - Training gaps

Gap Analysis Template

## Gap Analysis: [Control Area]

### Current State
[Description of current implementation]

### Required State
[Regulatory requirement or best practice]

### Gap Description
[Specific gaps identified]

### Risk Assessment
- Likelihood: [1-5]
- Impact: [1-5]
- Risk Score: [calculated]
- Risk Level: [Critical/High/Medium/Low]

### Remediation Plan
| Action | Owner | Due Date | Status |
|--------|-------|----------|--------|
| Action 1 | Name | Date | In Progress |
| Action 2 | Name | Date | Pending |

### Success Metrics
- [ ] Metric 1
- [ ] Metric 2

Audit Sampling

def calculate_sample_size(population: int, confidence: float = 0.95,
                         margin_error: float = 0.05) -> int:
    """
    Calculate statistical sample size for audit testing.

    Args:
        population: Total population size
        confidence: Confidence level (default 95%)
        margin_error: Acceptable margin of error (default 5%)

    Returns:
        Required sample size
    """
    import math

    # Z-score for confidence level
    z_scores = {0.90: 1.645, 0.95: 1.96, 0.99: 2.576}
    z = z_scores.get(confidence, 1.96)

    # Assume 50% response distribution for max sample
    p = 0.5

    # Sample size formula
    n = (z**2 * p * (1-p)) / (margin_error**2)

    # Finite population correction
    if population < 10000:
        n = n / (1 + (n - 1) / population)

    return math.ceil(n)

# Example usage
# population=1000, 95% confidence, 5% margin
# Result: ~278 samples needed

Continuous Monitoring

Real-time Dashboards:
  - Control effectiveness scores
  - Compliance coverage %
  - Open findings count
  - Risk heat map

Automated Alerts:
  Critical:
    - Failed security controls
    - Unauthorized access attempts
    - Data breach indicators

  Warning:
    - Controls approaching expiry
    - Overdue remediations
    - Anomaly detection triggers

Reporting Cadence:
  Daily: Critical events
  Weekly: Status summary
  Monthly: Detailed report
  Quarterly: Executive review
  Annually: Full assessment

Report Templates

Finding Report

# Finding Report

**ID:** FND-2024-042
**Date:** 2024-12-10
**Severity:** High

## Summary
[One-sentence description]

## Background
[Context and relevant history]

## Finding Details
[Technical details of the issue]

## Impact Assessment
- Business Impact: [description]
- Regulatory Impact: [description]
- Reputational Impact: [description]

## Root Cause
[Why this happened]

## Recommendation
[Specific remediation steps]

## Management Response
[Owner's response and commitment]

## Timeline
| Milestone | Date | Status |
|-----------|------|--------|
| Finding identified | 2024-12-10 | Complete |
| Remediation plan | 2024-12-15 | Pending |
| Implementation | 2024-01-15 | Pending |
| Verification | 2024-01-30 | Pending |

Лучшие практики

  1. Evidence first — каждый контроль должен иметь доказательства
  2. Risk-based prioritization — фокус на high-risk областях
  3. Continuous monitoring — не ждите годового аудита
  4. Clear ownership — каждый контроль имеет ответственного
  5. Regular testing — проверяйте effectiveness, не только design
  6. Documentation discipline — версионирование и audit trail

GitHub リポジトリ

majiayu000/claude-skill-registry
パス: skills/compliance-report-builder

関連スキル

content-collections

メタ

This skill provides a production-tested setup for Content Collections, a TypeScript-first tool that transforms Markdown/MDX files into type-safe data collections with Zod validation. Use it when building blogs, documentation sites, or content-heavy Vite + React applications to ensure type safety and automatic content validation. It covers everything from Vite plugin configuration and MDX compilation to deployment optimization and schema validation.

スキルを見る

creating-opencode-plugins

メタ

This skill provides the structure and API specifications for creating OpenCode plugins that hook into 25+ event types like commands, files, and LSP operations. It offers implementation patterns for JavaScript/TypeScript modules that intercept and extend the AI assistant's lifecycle. Use it when you need to build event-driven plugins for monitoring, custom handling, or extending OpenCode's capabilities.

スキルを見る

polymarket

メタ

This skill enables developers to build applications with the Polymarket prediction markets platform, including API integration for trading and market data. It also provides real-time data streaming via WebSocket to monitor live trades and market activity. Use it for implementing trading strategies or creating tools that process live market updates.

スキルを見る

cloudflare-turnstile

メタ

This skill provides comprehensive guidance for implementing Cloudflare Turnstile as a CAPTCHA-alternative bot protection system. It covers integration for forms, login pages, API endpoints, and frameworks like React/Next.js/Hono, while handling invisible challenges that maintain user experience. Use it when migrating from reCAPTCHA, debugging error codes, or implementing token validation and E2E tests.

スキルを見る