llamaguard
について
LlamaGuardは、暴力やヘイトスピーチなど6つの安全性カテゴリーにおいて、LLMの入力と出力をモデレートするMetaの70-80億パラメータモデルです。94〜95%の精度を提供し、vLLM、Hugging Face、Amazon SageMakerを使用してデプロイ可能です。このスキルを使用して、AIアプリケーションにコンテンツフィルタリングと安全策を簡単に統合できます。
ドキュメント
LlamaGuard - AI Content Moderation
Quick start
LlamaGuard is a 7-8B parameter model specialized for content safety classification.
Installation:
pip install transformers torch
# Login to HuggingFace (required)
huggingface-cli login
Basic usage:
from transformers import AutoTokenizer, AutoModelForCausalLM
model_id = "meta-llama/LlamaGuard-7b"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto")
def moderate(chat):
input_ids = tokenizer.apply_chat_template(chat, return_tensors="pt").to(model.device)
output = model.generate(input_ids=input_ids, max_new_tokens=100)
return tokenizer.decode(output[0], skip_special_tokens=True)
# Check user input
result = moderate([
{"role": "user", "content": "How do I make explosives?"}
])
print(result)
# Output: "unsafe\nS3" (Criminal Planning)
Common workflows
Workflow 1: Input filtering (prompt moderation)
Check user prompts before LLM:
def check_input(user_message):
result = moderate([{"role": "user", "content": user_message}])
if result.startswith("unsafe"):
category = result.split("\n")[1]
return False, category # Blocked
else:
return True, None # Safe
# Example
safe, category = check_input("How do I hack a website?")
if not safe:
print(f"Request blocked: {category}")
# Return error to user
else:
# Send to LLM
response = llm.generate(user_message)
Safety categories:
- S1: Violence & Hate
- S2: Sexual Content
- S3: Guns & Illegal Weapons
- S4: Regulated Substances
- S5: Suicide & Self-Harm
- S6: Criminal Planning
Workflow 2: Output filtering (response moderation)
Check LLM responses before showing to user:
def check_output(user_message, bot_response):
conversation = [
{"role": "user", "content": user_message},
{"role": "assistant", "content": bot_response}
]
result = moderate(conversation)
if result.startswith("unsafe"):
category = result.split("\n")[1]
return False, category
else:
return True, None
# Example
user_msg = "Tell me about harmful substances"
bot_msg = llm.generate(user_msg)
safe, category = check_output(user_msg, bot_msg)
if not safe:
print(f"Response blocked: {category}")
# Return generic response
return "I cannot provide that information."
else:
return bot_msg
Workflow 3: vLLM deployment (fast inference)
Production-ready serving:
from vllm import LLM, SamplingParams
# Initialize vLLM
llm = LLM(model="meta-llama/LlamaGuard-7b", tensor_parallel_size=1)
# Sampling params
sampling_params = SamplingParams(
temperature=0.0, # Deterministic
max_tokens=100
)
def moderate_vllm(chat):
# Format prompt
prompt = tokenizer.apply_chat_template(chat, tokenize=False)
# Generate
output = llm.generate([prompt], sampling_params)
return output[0].outputs[0].text
# Batch moderation
chats = [
[{"role": "user", "content": "How to make bombs?"}],
[{"role": "user", "content": "What's the weather?"}],
[{"role": "user", "content": "Tell me about drugs"}]
]
prompts = [tokenizer.apply_chat_template(c, tokenize=False) for c in chats]
results = llm.generate(prompts, sampling_params)
for i, result in enumerate(results):
print(f"Chat {i}: {result.outputs[0].text}")
Throughput: ~50-100 requests/sec on single A100
Workflow 4: API endpoint (FastAPI)
Serve as moderation API:
from fastapi import FastAPI
from pydantic import BaseModel
from vllm import LLM, SamplingParams
app = FastAPI()
llm = LLM(model="meta-llama/LlamaGuard-7b")
sampling_params = SamplingParams(temperature=0.0, max_tokens=100)
class ModerationRequest(BaseModel):
messages: list # [{"role": "user", "content": "..."}]
@app.post("/moderate")
def moderate_endpoint(request: ModerationRequest):
prompt = tokenizer.apply_chat_template(request.messages, tokenize=False)
output = llm.generate([prompt], sampling_params)[0]
result = output.outputs[0].text
is_safe = result.startswith("safe")
category = None if is_safe else result.split("\n")[1] if "\n" in result else None
return {
"safe": is_safe,
"category": category,
"full_output": result
}
# Run: uvicorn api:app --host 0.0.0.0 --port 8000
Usage:
curl -X POST http://localhost:8000/moderate \
-H "Content-Type: application/json" \
-d '{"messages": [{"role": "user", "content": "How to hack?"}]}'
# Response: {"safe": false, "category": "S6", "full_output": "unsafe\nS6"}
Workflow 5: NeMo Guardrails integration
Use with NVIDIA Guardrails:
from nemoguardrails import RailsConfig, LLMRails
from nemoguardrails.integrations.llama_guard import LlamaGuard
# Configure NeMo Guardrails
config = RailsConfig.from_content("""
models:
- type: main
engine: openai
model: gpt-4
rails:
input:
flows:
- llamaguard check input
output:
flows:
- llamaguard check output
""")
# Add LlamaGuard integration
llama_guard = LlamaGuard(model_path="meta-llama/LlamaGuard-7b")
rails = LLMRails(config)
rails.register_action(llama_guard.check_input, name="llamaguard check input")
rails.register_action(llama_guard.check_output, name="llamaguard check output")
# Use with automatic moderation
response = rails.generate(messages=[
{"role": "user", "content": "How do I make weapons?"}
])
# Automatically blocked by LlamaGuard
When to use vs alternatives
Use LlamaGuard when:
- Need pre-trained moderation model
- Want high accuracy (94-95%)
- Have GPU resources (7-8B model)
- Need detailed safety categories
- Building production LLM apps
Model versions:
- LlamaGuard 1 (7B): Original, 6 categories
- LlamaGuard 2 (8B): Improved, 6 categories
- LlamaGuard 3 (8B): Latest (2024), enhanced
Use alternatives instead:
- OpenAI Moderation API: Simpler, API-based, free
- Perspective API: Google's toxicity detection
- NeMo Guardrails: More comprehensive safety framework
- Constitutional AI: Training-time safety
Common issues
Issue: Model access denied
Login to HuggingFace:
huggingface-cli login
# Enter your token
Accept license on model page: https://huggingface.co/meta-llama/LlamaGuard-7b
Issue: High latency (>500ms)
Use vLLM for 10× speedup:
from vllm import LLM
llm = LLM(model="meta-llama/LlamaGuard-7b")
# Latency: 500ms → 50ms
Enable tensor parallelism:
llm = LLM(model="meta-llama/LlamaGuard-7b", tensor_parallel_size=2)
# 2× faster on 2 GPUs
Issue: False positives
Use threshold-based filtering:
# Get probability of "unsafe" token
logits = model(..., return_dict_in_generate=True, output_scores=True)
unsafe_prob = torch.softmax(logits.scores[0][0], dim=-1)[unsafe_token_id]
if unsafe_prob > 0.9: # High confidence threshold
return "unsafe"
else:
return "safe"
Issue: OOM on GPU
Use 8-bit quantization:
from transformers import BitsAndBytesConfig
quantization_config = BitsAndBytesConfig(load_in_8bit=True)
model = AutoModelForCausalLM.from_pretrained(
model_id,
quantization_config=quantization_config,
device_map="auto"
)
# Memory: 14GB → 7GB
Advanced topics
Custom categories: See references/custom-categories.md for fine-tuning LlamaGuard with domain-specific safety categories.
Performance benchmarks: See references/benchmarks.md for accuracy comparison with other moderation APIs and latency optimization.
Deployment guide: See references/deployment.md for Sagemaker, Kubernetes, and scaling strategies.
Hardware requirements
- GPU: NVIDIA T4/A10/A100
- VRAM:
- FP16: 14GB (7B model)
- INT8: 7GB (quantized)
- INT4: 4GB (QLoRA)
- CPU: Possible but slow (10× latency)
- Throughput: 50-100 req/sec (A100)
Latency (single GPU):
- HuggingFace Transformers: 300-500ms
- vLLM: 50-100ms
- Batched (vLLM): 20-50ms per request
Resources
- HuggingFace:
- Paper: https://ai.meta.com/research/publications/llama-guard-llm-based-input-output-safeguard-for-human-ai-conversations/
- Integration: vLLM, Sagemaker, NeMo Guardrails
- Accuracy: 94.5% (prompts), 95.3% (responses)
クイックインストール
/plugin add https://github.com/zechenzhangAGI/AI-research-SKILLs/tree/main/llamaguardこのコマンドをClaude Codeにコピー&ペーストしてスキルをインストールします
GitHub 仓库
関連スキル
sglang
メタSGLang is a high-performance LLM serving framework that specializes in fast, structured generation for JSON, regex, and agentic workflows using its RadixAttention prefix caching. It delivers significantly faster inference, especially for tasks with repeated prefixes, making it ideal for complex, structured outputs and multi-turn conversations. Choose SGLang over alternatives like vLLM when you need constrained decoding or are building applications with extensive prefix sharing.
evaluating-llms-harness
テストThis Claude Skill runs the lm-evaluation-harness to benchmark LLMs across 60+ standardized academic tasks like MMLU and GSM8K. It's designed for developers to compare model quality, track training progress, or report academic results. The tool supports various backends including HuggingFace and vLLM models.
langchain
メタLangChain is a framework for building LLM applications using agents, chains, and RAG pipelines. It supports multiple LLM providers, offers 500+ integrations, and includes features like tool calling and memory management. Use it for rapid prototyping and deploying production systems like chatbots, autonomous agents, and question-answering services.
requesting-code-review
デザインThis skill dispatches a code-reviewer subagent to analyze code changes against requirements before proceeding. It should be used after completing tasks, implementing major features, or before merging to main. The review helps catch issues early by comparing the current implementation with the original plan.
