MCP HubMCP Hub
スキル一覧に戻る

bio-workflows-crispr-screen-pipeline

majiayu000
更新日 Yesterday
23 閲覧
58
9
58
GitHubで表示
デザインautomationdesigndata

について

このスキルは、プール型CRISPRスクリーンの分析のためのエンドツーエンドパイプラインを提供し、FASTQファイルからヒット遺伝子の同定までのデータ処理を行います。MAGeCKを使用したガイドカウント、品質管理、統計解析を調整し、複数のヒットコーリング手法をサポートします。生のシーケンスデータから結果までの、完全で自動化されたCRISPRスクリーン分析ワークフローが必要な場合にご利用ください。

クイックインストール

Claude Code

推奨
プラグインコマンド推奨
/plugin add https://github.com/majiayu000/claude-skill-registry
Git クローン代替
git clone https://github.com/majiayu000/claude-skill-registry.git ~/.claude/skills/bio-workflows-crispr-screen-pipeline

このコマンドをClaude Codeにコピー&ペーストしてスキルをインストールします

ドキュメント

CRISPR Screen Pipeline

Pipeline Overview

FASTQ Files ──> Guide Counting ──> Count Matrix
                                        │
                                        ▼
              ┌─────────────────────────────────────────────┐
              │         crispr-screen-pipeline              │
              ├─────────────────────────────────────────────┤
              │  1. Guide Counting (MAGeCK count)           │
              │  2. QC: Library coverage, gini index        │
              │  3. Gene-level Analysis (MAGeCK RRA/MLE)    │
              │  4. Hit Calling (FDR, effect size)          │
              │  5. Visualization & Reporting               │
              └─────────────────────────────────────────────┘
                                        │
                                        ▼
                    Hit Genes + Volcano/Rank Plots

Complete Workflow

Step 1: Guide Counting

# From FASTQ files
mageck count \
    -l library.csv \
    -n experiment \
    --sample-label Day0,Day14_Rep1,Day14_Rep2,Day14_Rep3 \
    --fastq Day0.fastq.gz Day14_Rep1.fastq.gz Day14_Rep2.fastq.gz Day14_Rep3.fastq.gz \
    --trim-5 0 \
    --pdf-report

Step 2: Quality Control

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

counts = pd.read_csv('experiment.count.txt', sep='\t', index_col=0)
counts_numeric = counts.iloc[:, 1:]

qc_stats = {}
for col in counts_numeric.columns:
    total = counts_numeric[col].sum()
    zeros = (counts_numeric[col] == 0).sum()
    gini = calculate_gini(counts_numeric[col].values)
    qc_stats[col] = {'total_reads': total, 'zero_count_guides': zeros, 'gini': gini}

qc_df = pd.DataFrame(qc_stats).T
print('QC Summary:')
print(qc_df)

# Gini index function
def calculate_gini(x):
    x = np.sort(x[x > 0])
    n = len(x)
    cumsum = np.cumsum(x)
    return (2 * np.sum((np.arange(1, n+1) * x)) - (n + 1) * cumsum[-1]) / (n * cumsum[-1])

# QC thresholds
assert qc_df['zero_count_guides'].max() < len(counts) * 0.2, 'Too many zero-count guides'
assert qc_df['gini'].max() < 0.4, 'Gini index too high (uneven distribution)'
print('QC passed!')

Step 3: MAGeCK RRA Analysis (Negative Selection)

# For dropout/negative selection screens
mageck test \
    -k experiment.count.txt \
    -t Day14_Rep1,Day14_Rep2,Day14_Rep3 \
    -c Day0 \
    -n negative_screen \
    --pdf-report \
    --gene-lfc-method alphamedian

Step 4: MAGeCK MLE (Complex Designs)

# For screens with multiple conditions
# Design matrix: design.txt
# samplename,baseline,treatment
# Day0,1,0
# Day14_Ctrl,1,0
# Day14_Drug,1,1

mageck mle \
    -k experiment.count.txt \
    -d design.txt \
    -n mle_analysis \
    --threads 8

Step 5: Hit Calling

import pandas as pd

# Load MAGeCK results
gene_summary = pd.read_csv('negative_screen.gene_summary.txt', sep='\t')

# Define hits
gene_summary['neg_hit'] = (gene_summary['neg|fdr'] < 0.05) & (gene_summary['neg|lfc'] < -0.5)
gene_summary['pos_hit'] = (gene_summary['pos|fdr'] < 0.05) & (gene_summary['pos|lfc'] > 0.5)

neg_hits = gene_summary[gene_summary['neg_hit']].sort_values('neg|rank')
pos_hits = gene_summary[gene_summary['pos_hit']].sort_values('pos|rank')

print(f'Negative selection hits (dropout): {len(neg_hits)}')
print(f'Positive selection hits (enriched): {len(pos_hits)}')

# Save hit lists
neg_hits.to_csv('negative_hits.csv', index=False)
pos_hits.to_csv('positive_hits.csv', index=False)

Step 6: Visualization

import matplotlib.pyplot as plt
import numpy as np

# Volcano plot
fig, ax = plt.subplots(figsize=(10, 8))
x = gene_summary['neg|lfc']
y = -np.log10(gene_summary['neg|fdr'] + 1e-10)

colors = ['red' if h else 'blue' if p else 'gray'
          for h, p in zip(gene_summary['neg_hit'], gene_summary['pos_hit'])]
ax.scatter(x, y, c=colors, alpha=0.5, s=20)

ax.axhline(-np.log10(0.05), linestyle='--', color='black', alpha=0.5)
ax.axvline(-0.5, linestyle='--', color='black', alpha=0.5)
ax.axvline(0.5, linestyle='--', color='black', alpha=0.5)

ax.set_xlabel('Log2 Fold Change')
ax.set_ylabel('-Log10(FDR)')
ax.set_title('CRISPR Screen Volcano Plot')
plt.tight_layout()
plt.savefig('volcano_plot.png', dpi=150)

Complete R Workflow

library(MAGeCKFlute)
library(ggplot2)

# Load MAGeCK results
gene_summary <- read.delim('negative_screen.gene_summary.txt')
sgrna_summary <- read.delim('negative_screen.sgrna_summary.txt')

# QC with MAGeCKFlute
FluteMLE(mle_output = 'mle_analysis.gene_summary.txt',
         treatname = 'treatment',
         proj = 'crispr_screen',
         pathview.top = 10)

# Or for RRA results
FluteRRA(gene_summary = gene_summary,
         sgrna_summary = sgrna_summary,
         proj = 'rra_analysis')

# Custom rank plot
gene_summary$rank <- rank(gene_summary$`neg.score`)
gene_summary$is_hit <- gene_summary$`neg.fdr` < 0.05

ggplot(gene_summary, aes(x = rank, y = -log10(`neg.fdr` + 1e-10), color = is_hit)) +
    geom_point(alpha = 0.5) +
    geom_hline(yintercept = -log10(0.05), linetype = 'dashed') +
    scale_color_manual(values = c('gray', 'red')) +
    theme_bw() +
    labs(title = 'Gene Rank Plot', x = 'Rank', y = '-Log10(FDR)')
ggsave('rank_plot.png', width = 10, height = 6)

BAGEL2 Alternative (Essential Genes)

# Calculate Bayes Factor for essentiality
BAGEL.py bf \
    -i experiment.count.txt \
    -o bagel_output \
    -e CEGv2.txt \
    -n NEGv1.txt \
    -c Day0 \
    -s Day14_Rep1,Day14_Rep2,Day14_Rep3

# Precision-recall analysis
BAGEL.py pr \
    -i bagel_output.bf \
    -o bagel_pr \
    -e CEGv2.txt \
    -n NEGv1.txt

QC Checkpoints

StageCheckAction if Failed
Counting>70% mapping rateCheck library/trimming
Zero guides<20%Check sequencing depth
Gini index<0.4Check for amplification bias
Replicatesr > 0.8Check experimental consistency
ControlsSeparate in PCACheck screen worked

Workflow Variants

Positive Selection Screen

# For enrichment screens (e.g., drug resistance)
mageck test \
    -k counts.txt \
    -t Resistant_Rep1,Resistant_Rep2 \
    -c Sensitive \
    -n positive_screen \
    --gene-lfc-method alphamedian

CRISPRi/CRISPRa

# Same workflow, different interpretation
# CRISPRi: negative LFC = gene promotes phenotype
# CRISPRa: positive LFC = gene promotes phenotype
mageck test -k counts.txt -t Treated -c Control -n crispri_screen

Related Skills

  • crispr-screens/screen-qc - Detailed QC metrics
  • crispr-screens/mageck-analysis - MAGeCK parameters
  • crispr-screens/hit-calling - Hit calling methods
  • crispr-screens/crispresso-editing - Individual editing analysis
  • crispr-screens/library-design - sgRNA selection and library design
  • crispr-screens/batch-correction - Multi-batch normalization
  • pathway-analysis/enrichment-analysis - Pathway enrichment of hits

GitHub リポジトリ

majiayu000/claude-skill-registry
パス: skills/crispr-screen-pipeline

関連スキル

content-collections

メタ

This skill provides a production-tested setup for Content Collections, a TypeScript-first tool that transforms Markdown/MDX files into type-safe data collections with Zod validation. Use it when building blogs, documentation sites, or content-heavy Vite + React applications to ensure type safety and automatic content validation. It covers everything from Vite plugin configuration and MDX compilation to deployment optimization and schema validation.

スキルを見る

creating-opencode-plugins

メタ

This skill provides the structure and API specifications for creating OpenCode plugins that hook into 25+ event types like commands, files, and LSP operations. It offers implementation patterns for JavaScript/TypeScript modules that intercept and extend the AI assistant's lifecycle. Use it when you need to build event-driven plugins for monitoring, custom handling, or extending OpenCode's capabilities.

スキルを見る

sglang

メタ

SGLang is a high-performance LLM serving framework that specializes in fast, structured generation for JSON, regex, and agentic workflows using its RadixAttention prefix caching. It delivers significantly faster inference, especially for tasks with repeated prefixes, making it ideal for complex, structured outputs and multi-turn conversations. Choose SGLang over alternatives like vLLM when you need constrained decoding or are building applications with extensive prefix sharing.

スキルを見る

polymarket

メタ

This skill enables developers to build applications with the Polymarket prediction markets platform, including API integration for trading and market data. It also provides real-time data streaming via WebSocket to monitor live trades and market activity. Use it for implementing trading strategies or creating tools that process live market updates.

スキルを見る