MCP HubMCP Hub
スキル一覧に戻る

docs-seeker

Elios-FPT
更新日 Today
197 閲覧
1
GitHubで表示
テストwordaitesting

について

docs-seekerスキルは、開発者がllms.txt標準やRepomixによるGitHubリポジトリ分析を含む複数の並列戦略を使用して技術文書を検索できるようにします。このスキルは、最新のライブラリ/フレームワーク文書を見つけるために設計され、llms.txt形式のコンテンツと従来の文書ソースの両方を扱います。複数のソースにわたって包括的な文書発見を同時に行う必要がある場合に、このスキルをご利用ください。

クイックインストール

Claude Code

推奨
プラグインコマンド推奨
/plugin add https://github.com/Elios-FPT/EliosCodePracticeService
Git クローン代替
git clone https://github.com/Elios-FPT/EliosCodePracticeService.git ~/.claude/skills/docs-seeker

このコマンドをClaude Codeにコピー&ペーストしてスキルをインストールします

ドキュメント

Documentation Discovery & Analysis

Overview

Intelligent discovery and analysis of technical documentation through multiple strategies:

  1. llms.txt-first: Search for standardized AI-friendly documentation
  2. Repository analysis: Use Repomix to analyze GitHub repositories
  3. Parallel exploration: Deploy multiple Explorer agents for comprehensive coverage
  4. Fallback research: Use Researcher agents when other methods unavailable

Core Workflow

Phase 1: Initial Discovery

  1. Identify target

    • Extract library/framework name from user request
    • Note version requirements (default: latest)
    • Clarify scope if ambiguous
    • Identify if target is GitHub repository or website
  2. Search for llms.txt (PRIORITIZE context7.com)

    First: Try context7.com patterns

    For GitHub repositories:

    Pattern: https://context7.com/{org}/{repo}/llms.txt
    Examples:
    - https://github.com/imagick/imagick → https://context7.com/imagick/imagick/llms.txt
    - https://github.com/vercel/next.js → https://context7.com/vercel/next.js/llms.txt
    - https://github.com/better-auth/better-auth → https://context7.com/better-auth/better-auth/llms.txt
    

    For websites:

    Pattern: https://context7.com/websites/{normalized-domain-path}/llms.txt
    Examples:
    - https://docs.imgix.com/ → https://context7.com/websites/imgix/llms.txt
    - https://docs.byteplus.com/en/docs/ModelArk/ → https://context7.com/websites/byteplus_en_modelark/llms.txt
    - https://docs.haystack.deepset.ai/docs → https://context7.com/websites/haystack_deepset_ai/llms.txt
    - https://ffmpeg.org/doxygen/8.0/ → https://context7.com/websites/ffmpeg_doxygen_8_0/llms.txt
    

    Topic-specific searches (when user asks about specific feature):

    Pattern: https://context7.com/{path}/llms.txt?topic={query}
    Examples:
    - https://context7.com/shadcn-ui/ui/llms.txt?topic=date
    - https://context7.com/shadcn-ui/ui/llms.txt?topic=button
    - https://context7.com/vercel/next.js/llms.txt?topic=cache
    - https://context7.com/websites/ffmpeg_doxygen_8_0/llms.txt?topic=compress
    

    Fallback: Traditional llms.txt search

    WebSearch: "[library name] llms.txt site:[docs domain]"
    

    Common patterns:

    • https://docs.[library].com/llms.txt
    • https://[library].dev/llms.txt
    • https://[library].io/llms.txt

    → Found? Proceed to Phase 2 → Not found? Proceed to Phase 3

Phase 2: llms.txt Processing

Single URL:

  • WebFetch to retrieve content
  • Extract and present information

Multiple URLs (3+):

  • CRITICAL: Launch multiple Explorer agents in parallel
  • One agent per major documentation section (max 5 in first batch)
  • Each agent reads assigned URLs
  • Aggregate findings into consolidated report

Example:

Launch 3 Explorer agents simultaneously:
- Agent 1: getting-started.md, installation.md
- Agent 2: api-reference.md, core-concepts.md
- Agent 3: examples.md, best-practices.md

Phase 3: Repository Analysis

When llms.txt not found:

  1. Find GitHub repository via WebSearch
  2. Use Repomix to pack repository:
    npm install -g repomix  # if needed
    git clone [repo-url] /tmp/docs-analysis
    cd /tmp/docs-analysis
    repomix --output repomix-output.xml
    
  3. Read repomix-output.xml and extract documentation

Repomix benefits:

  • Entire repository in single AI-friendly file
  • Preserves directory structure
  • Optimized for AI consumption

Phase 4: Fallback Research

When no GitHub repository exists:

  • Launch multiple Researcher agents in parallel
  • Focus areas: official docs, tutorials, API references, community guides
  • Aggregate findings into consolidated report

Agent Distribution Guidelines

  • 1-3 URLs: Single Explorer agent
  • 4-10 URLs: 3-5 Explorer agents (2-3 URLs each)
  • 11+ URLs: 5-7 Explorer agents (prioritize most relevant)

Version Handling

Latest (default):

  • Search without version specifier
  • Use current documentation paths

Specific version:

  • Include version in search: [library] v[version] llms.txt
  • Check versioned paths: /v[version]/llms.txt
  • For repositories: checkout specific tag/branch

Output Format

# Documentation for [Library] [Version]

## Source
- Method: [llms.txt / Repository / Research]
- URLs: [list of sources]
- Date accessed: [current date]

## Key Information
[Extracted relevant information organized by topic]

## Additional Resources
[Related links, examples, references]

## Notes
[Any limitations, missing information, or caveats]

Quick Reference

Tool selection:

  • WebSearch → Find llms.txt URLs, GitHub repositories
  • WebFetch → Read single documentation pages
  • Task (Explore) → Multiple URLs, parallel exploration
  • Task (Researcher) → Scattered documentation, diverse sources
  • Repomix → Complete codebase analysis

Popular llms.txt locations (try context7.com first):

Fallback to official sites if context7.com unavailable:

Error Handling

  • llms.txt not accessible → Try alternative domains → Repository analysis
  • Repository not found → Search official website → Use Researcher agents
  • Repomix fails → Try /docs directory only → Manual exploration
  • Multiple conflicting sources → Prioritize official → Note versions

Key Principles

  1. Prioritize context7.com for llms.txt — Most comprehensive and up-to-date aggregator
  2. Use topic parameters when applicable — Enables targeted searches with ?topic=...
  3. Use parallel agents aggressively — Faster results, better coverage
  4. Verify official sources as fallback — Use when context7.com unavailable
  5. Report methodology — Tell user which approach was used
  6. Handle versions explicitly — Don't assume latest

Detailed Documentation

For comprehensive guides, examples, and best practices:

Workflows:

  • WORKFLOWS.md — Detailed workflow examples and strategies

Reference guides:

GitHub リポジトリ

Elios-FPT/EliosCodePracticeService
パス: .claude/skills/docs-seeker

関連スキル

content-collections

メタ

This skill provides a production-tested setup for Content Collections, a TypeScript-first tool that transforms Markdown/MDX files into type-safe data collections with Zod validation. Use it when building blogs, documentation sites, or content-heavy Vite + React applications to ensure type safety and automatic content validation. It covers everything from Vite plugin configuration and MDX compilation to deployment optimization and schema validation.

スキルを見る

evaluating-llms-harness

テスト

This Claude Skill runs the lm-evaluation-harness to benchmark LLMs across 60+ standardized academic tasks like MMLU and GSM8K. It's designed for developers to compare model quality, track training progress, or report academic results. The tool supports various backends including HuggingFace and vLLM models.

スキルを見る

sglang

メタ

SGLang is a high-performance LLM serving framework that specializes in fast, structured generation for JSON, regex, and agentic workflows using its RadixAttention prefix caching. It delivers significantly faster inference, especially for tasks with repeated prefixes, making it ideal for complex, structured outputs and multi-turn conversations. Choose SGLang over alternatives like vLLM when you need constrained decoding or are building applications with extensive prefix sharing.

スキルを見る

cloudflare-turnstile

メタ

This skill provides comprehensive guidance for implementing Cloudflare Turnstile as a CAPTCHA-alternative bot protection system. It covers integration for forms, login pages, API endpoints, and frameworks like React/Next.js/Hono, while handling invisible challenges that maintain user experience. Use it when migrating from reCAPTCHA, debugging error codes, or implementing token validation and E2E tests.

スキルを見る