MCP HubMCP Hub
スキル一覧に戻る

testing-load-balancers

jeremylongshore
更新日 Yesterday
90 閲覧
712
74
712
GitHubで表示
メタaitestingdesign

について

このスキルは、Claudeが負荷分散設定をテストできるようにし、トラフィック分散の検証、フェイルオーバーシナリオのテスト、スティッキーセッションとヘルスチェックの確認を行います。開発者がロードバランサーのテスト、トラフィック分散の検証、またはサーバー障害のシミュレーションを依頼した際にご利用ください。BashやGrepなどのツールを備えた`load-balancer-tester`プラグインを使用して動作します。

クイックインストール

Claude Code

推奨
プラグインコマンド推奨
/plugin add https://github.com/jeremylongshore/claude-code-plugins-plus
Git クローン代替
git clone https://github.com/jeremylongshore/claude-code-plugins-plus.git ~/.claude/skills/testing-load-balancers

このコマンドをClaude Codeにコピー&ペーストしてスキルをインストールします

ドキュメント

Overview

This skill empowers Claude to thoroughly test load balancing configurations, ensuring high availability and optimal performance. It automates the process of validating traffic distribution, simulating server failures, and verifying session persistence.

How It Works

  1. Initiating the Test: Claude receives a request to test the load balancer.
  2. Executing the Test Suite: Claude uses the load-balancer-tester plugin to run a series of tests, including traffic distribution validation, failover testing, sticky session verification, and health check testing.
  3. Presenting the Results: Claude provides a summary of the test results, highlighting any issues or areas for improvement.

When to Use This Skill

This skill activates when you need to:

  • Validate traffic distribution across backend servers.
  • Test the load balancer's ability to handle server failures.
  • Verify that sticky sessions are functioning correctly.
  • Ensure that health checks are effectively removing unhealthy servers from the pool.

Examples

Example 1: Validating Traffic Distribution

User request: "Test load balancer traffic distribution for even distribution across servers."

The skill will:

  1. Execute the lb-test command.
  2. Analyze the traffic distribution across the backend servers.
  3. Report whether the traffic is evenly distributed.

Example 2: Simulating a Failover Scenario

User request: "Test failover when one of the backend servers becomes unavailable."

The skill will:

  1. Execute the lb-test command.
  2. Simulate a server failure.
  3. Verify that traffic is redirected to the remaining healthy servers.
  4. Report on the success of the failover process.

Best Practices

  • Configuration: Ensure the load balancer is properly configured before testing.
  • Realistic Scenarios: Test with realistic traffic patterns and failure scenarios.
  • Comprehensive Testing: Test all aspects of the load balancer, including traffic distribution, failover, sticky sessions, and health checks.

Integration

This skill works independently using the load-balancer-tester plugin. It can be used in conjunction with other skills to configure and manage the load balancer before testing.

GitHub リポジトリ

jeremylongshore/claude-code-plugins-plus
パス: backups/skills-batch-20251204-000554/plugins/testing/load-balancer-tester/skills/load-balancer-tester
aiautomationclaude-codedevopsmarketplacemcp

関連スキル

content-collections

メタ

This skill provides a production-tested setup for Content Collections, a TypeScript-first tool that transforms Markdown/MDX files into type-safe data collections with Zod validation. Use it when building blogs, documentation sites, or content-heavy Vite + React applications to ensure type safety and automatic content validation. It covers everything from Vite plugin configuration and MDX compilation to deployment optimization and schema validation.

スキルを見る

creating-opencode-plugins

メタ

This skill provides the structure and API specifications for creating OpenCode plugins that hook into 25+ event types like commands, files, and LSP operations. It offers implementation patterns for JavaScript/TypeScript modules that intercept and extend the AI assistant's lifecycle. Use it when you need to build event-driven plugins for monitoring, custom handling, or extending OpenCode's capabilities.

スキルを見る

evaluating-llms-harness

テスト

This Claude Skill runs the lm-evaluation-harness to benchmark LLMs across 60+ standardized academic tasks like MMLU and GSM8K. It's designed for developers to compare model quality, track training progress, or report academic results. The tool supports various backends including HuggingFace and vLLM models.

スキルを見る

sglang

メタ

SGLang is a high-performance LLM serving framework that specializes in fast, structured generation for JSON, regex, and agentic workflows using its RadixAttention prefix caching. It delivers significantly faster inference, especially for tasks with repeated prefixes, making it ideal for complex, structured outputs and multi-turn conversations. Choose SGLang over alternatives like vLLM when you need constrained decoding or are building applications with extensive prefix sharing.

スキルを見る