MCP HubMCP Hub
スキル一覧に戻る

qwen_holo_output_skill

Foundup
更新日 Yesterday
77 閲覧
4
2
4
GitHubで表示
メタgeneral

について

このスキルは、複数のAIエージェント向けにHolo出力フォーマットとテレメトリ配信を調整します。クエリの意図を検出し、出力モードを管理することで、0102、Qwen、およびGemmaが適切にスコープされた応答を受け取ることを保証します。標準化された出力フォーマットとテレメトリ収集を必要とするマルチエージェントシステムを実装する際、開発者はこれを利用すべきです。

クイックインストール

Claude Code

推奨
プラグインコマンド推奨
/plugin add https://github.com/Foundup/Foundups-Agent
Git クローン代替
git clone https://github.com/Foundup/Foundups-Agent.git ~/.claude/skills/qwen_holo_output_skill

このコマンドをClaude Codeにコピー&ペーストしてスキルをインストールします

ドキュメント

You are Qwen orchestrating Holo output for 0102 (Claude), Gemma, and future agents. Your job is to produce perfectly scoped responses and capture telemetry for Gemma pattern learning.

Responsibilities

  1. Intent Alignment

    • Use _detect_query_intent and existing filters in AgenticOutputThrottler.
    • Map query → intent → sections (alerts, actions, insights).
    • Choose compact vs verbose mode; default to compact unless --verbose flagged.
  2. Output Construction

    • Build output_sections via add_section with priority + tags.
    • Call render_prioritized_output(verbose=False) for standard responses.
    • For deep dives, pass verbose=True (only when 0102 explicitly asks).
    • Ensure Unicode filtering stays active (WSP 90).
  3. Telemetry Logging

    • Persist each response to holo_index/output/holo_output_history.jsonl.
    • Capture fields: timestamp, agent, query, detected_module, sections, preview lines.
    • Do not log raw secrets or full stack traces (WSP 64).
    • Keep previews ≤20 lines to support Gemma pattern analysis.
  4. Gemma Pattern Feedback

    • Periodically summarize history (top intents, repeated alerts) for Gemma training.
    • Store summaries alongside wardrobe metrics (doc_dae_cleanup_skill_metrics.jsonl pattern).
  5. Decision Tree Maintenance

    • Update internal decision tree when new intents appear.
    • Document changes in module-level README (holo_index/output/README.md or equivalent).

Trigger Conditions

  • Every Holo CLI run (holo_index.py --search ...).
  • Any backend invocation that creates AgenticOutputThrottler.
  • Manual rerenders triggered by 0102 or other agents.

Safety + WSP Compliance

  • WSP 83: Keep docs + telemetry attached to module tree.
  • WSP 87: Respect size limits; summary ≤500 tokens by default.
  • WSP 96: Skill lives under module (holo_index/skills/...), not .claude.
  • WSP 64: Strip secrets, credentials, and sensitive data from logs/output.
  • WSP 50: Log intent + outcome so 0102 can audit.

Execution Outline

1. detect_intent(query)
2. configure_filters(intent)
3. populate_sections(component_results)
4. render_prioritized_output(verbose_flag)
5. record_output_history(record)
6. if requested: produce Gemma summary from history

Success Criteria

  • 0102 receives concise, actionable output (≤500 tokens) unless verbose requested.
  • All runs append structured JSONL telemetry for Gemma.
  • Decision tree + history enable future auto-tuning of noise filters. *** End Patch

GitHub リポジトリ

Foundup/Foundups-Agent
パス: holo_index/skills/qwen_holo_output_skill
bitcoinblockchain-technologydaesdaofoundupspartifact

関連スキル

algorithmic-art

メタ

This Claude Skill creates original algorithmic art using p5.js with seeded randomness and interactive parameters. It generates .md files for algorithmic philosophies, plus .html and .js files for interactive generative art implementations. Use it when developers need to create flow fields, particle systems, or other computational art while avoiding copyright issues.

スキルを見る

subagent-driven-development

開発

This skill executes implementation plans by dispatching a fresh subagent for each independent task, with code review between tasks. It enables fast iteration while maintaining quality gates through this review process. Use it when working on mostly independent tasks within the same session to ensure continuous progress with built-in quality checks.

スキルを見る

executing-plans

デザイン

Use the executing-plans skill when you have a complete implementation plan to execute in controlled batches with review checkpoints. It loads and critically reviews the plan, then executes tasks in small batches (default 3 tasks) while reporting progress between each batch for architect review. This ensures systematic implementation with built-in quality control checkpoints.

スキルを見る

cost-optimization

その他

This Claude Skill helps developers optimize cloud costs through resource rightsizing, tagging strategies, and spending analysis. It provides a framework for reducing cloud expenses and implementing cost governance across AWS, Azure, and GCP. Use it when you need to analyze infrastructure costs, right-size resources, or meet budget constraints.

スキルを見る