MCP HubMCP Hub
スキル一覧に戻る

aggregating-performance-metrics

jeremylongshore
更新日 Today
51 閲覧
712
74
712
GitHubで表示
その他data

について

このスキルは、アプリケーション、データベース、サービスなど複数のソースからパフォーマンスメトリクスを収集し、監視のための一元化されたビューに統合します。メトリクスの分類体系を設計し、集計ツールを選択することで、開発者が監視データを統合することを支援します。「メトリクスを集計して」や「監視を一元化して」などのフレーズでトリガーされ、パフォーマンス分析を効率化するためにご利用ください。

クイックインストール

Claude Code

推奨
プラグインコマンド推奨
/plugin add https://github.com/jeremylongshore/claude-code-plugins-plus
Git クローン代替
git clone https://github.com/jeremylongshore/claude-code-plugins-plus.git ~/.claude/skills/aggregating-performance-metrics

このコマンドをClaude Codeにコピー&ペーストしてスキルをインストールします

ドキュメント

Overview

This skill empowers Claude to streamline performance monitoring by aggregating metrics from diverse systems into a unified view. It simplifies the process of collecting, centralizing, and analyzing performance data, leading to improved insights and faster issue resolution.

How It Works

  1. Metrics Taxonomy Design: Claude assists in defining a clear and consistent naming convention for metrics across all systems.
  2. Aggregation Tool Selection: Claude helps select the appropriate metrics aggregation tool (e.g., Prometheus, StatsD, CloudWatch) based on the user's environment and requirements.
  3. Configuration and Integration: Claude guides the configuration of the chosen aggregation tool and its integration with various data sources.
  4. Dashboard and Alert Setup: Claude helps set up dashboards for visualizing metrics and defining alerts for critical performance indicators.

When to Use This Skill

This skill activates when you need to:

  • Centralize performance metrics from multiple applications and systems.
  • Design a consistent metrics naming convention.
  • Choose the right metrics aggregation tool for your needs.
  • Set up dashboards and alerts for performance monitoring.

Examples

Example 1: Centralizing Application and System Metrics

User request: "Aggregate application and system metrics into Prometheus."

The skill will:

  1. Guide the user in defining metrics for applications (e.g., request latency, error rates) and systems (e.g., CPU usage, memory utilization).
  2. Help configure Prometheus to scrape metrics from the application and system endpoints.

Example 2: Setting Up Alerts for Database Performance

User request: "Centralize database metrics and set up alerts for slow queries."

The skill will:

  1. Help the user define metrics for database performance (e.g., query execution time, connection pool usage).
  2. Guide the user in configuring the aggregation tool to collect these metrics from the database.
  3. Assist in setting up alerts in the aggregation tool to notify the user when query execution time exceeds a defined threshold.

Best Practices

  • Naming Conventions: Use a consistent and well-defined naming convention for all metrics to ensure clarity and ease of analysis.
  • Granularity: Choose an appropriate level of granularity for metrics to balance detail and storage requirements.
  • Retention Policies: Define retention policies for metrics to manage storage space and ensure data is available for historical analysis.

Integration

This skill integrates with other plugins that manage infrastructure, deploy applications, and monitor system health. For example, it can be used in conjunction with a deployment plugin to automatically configure metrics collection after a new application deployment.

Prerequisites

  • Access to metrics collection tools (Prometheus, StatsD, CloudWatch)
  • Network connectivity to metric sources
  • Metrics storage configuration in {baseDir}/metrics/
  • Understanding of metrics taxonomy

Instructions

  1. Design consistent metrics naming convention
  2. Select appropriate aggregation tool for environment
  3. Configure metric collection from all sources
  4. Set up centralized storage and retention policies
  5. Create dashboards for visualization
  6. Define alerts for critical metrics

Output

  • Metrics aggregation configuration files
  • Unified naming convention documentation
  • Dashboard definitions for key metrics
  • Alert rules for performance thresholds
  • Integration guides for metric sources

Error Handling

If metrics aggregation fails:

  • Verify network connectivity to sources
  • Check authentication credentials
  • Validate metrics format compatibility
  • Review storage capacity and retention
  • Ensure aggregation tool configuration

Resources

  • Prometheus aggregation documentation
  • StatsD protocol specifications
  • CloudWatch metrics API reference
  • Metrics naming best practices

GitHub リポジトリ

jeremylongshore/claude-code-plugins-plus
パス: plugins/performance/metrics-aggregator/skills/metrics-aggregator
aiautomationclaude-codedevopsmarketplacemcp

関連スキル

content-collections

メタ

This skill provides a production-tested setup for Content Collections, a TypeScript-first tool that transforms Markdown/MDX files into type-safe data collections with Zod validation. Use it when building blogs, documentation sites, or content-heavy Vite + React applications to ensure type safety and automatic content validation. It covers everything from Vite plugin configuration and MDX compilation to deployment optimization and schema validation.

スキルを見る

polymarket

メタ

This skill enables developers to build applications with the Polymarket prediction markets platform, including API integration for trading and market data. It also provides real-time data streaming via WebSocket to monitor live trades and market activity. Use it for implementing trading strategies or creating tools that process live market updates.

スキルを見る

hybrid-cloud-networking

メタ

This skill configures secure hybrid cloud networking between on-premises infrastructure and cloud platforms like AWS, Azure, and GCP. Use it when connecting data centers to the cloud, building hybrid architectures, or implementing secure cross-premises connectivity. It supports key capabilities such as VPNs and dedicated connections like AWS Direct Connect for high-performance, reliable setups.

スキルを見る

llamaindex

メタ

LlamaIndex is a data framework for building RAG-powered LLM applications, specializing in document ingestion, indexing, and querying. It provides key features like vector indices, query engines, and agents, and supports over 300 data connectors. Use it for document Q&A, chatbots, and knowledge retrieval when building data-centric applications.

スキルを見る