MCP HubMCP Hub
スキル一覧に戻る

running-integration-tests

jeremylongshore
更新日 Yesterday
94 閲覧
712
74
712
GitHubで表示
メタaitestingautomationdesigndata

について

このスキルは、環境設定、データベース操作、サービスオーケストレーションを処理することで、統合テストスイートの実行を自動化します。特定のテストスイートやカバレッジオプションを含む統合テストの実行を求められた際にご利用ください。データベースのシーディングやマイグレーションから依存サービスの管理、クリーンアップまで、テストの全ライフサイクルを管理します。

クイックインストール

Claude Code

推奨
プラグインコマンド推奨
/plugin add https://github.com/jeremylongshore/claude-code-plugins-plus
Git クローン代替
git clone https://github.com/jeremylongshore/claude-code-plugins-plus.git ~/.claude/skills/running-integration-tests

このコマンドをClaude Codeにコピー&ペーストしてスキルをインストールします

ドキュメント

Overview

This skill empowers Claude to execute comprehensive integration tests, ensuring seamless interactions between various system components. It automates the often complex setup and teardown processes, providing reliable and repeatable test runs.

How It Works

  1. Environment Preparation: The plugin sets up the test environment, including creating/resetting databases, running migrations, and seeding test data.
  2. Test Execution: The plugin executes the integration test suites, capturing detailed logs and reporting progress.
  3. Cleanup: After the tests, the plugin cleans up the environment, dropping the test database, stopping services, and removing temporary files to prevent test pollution.

When to Use This Skill

This skill activates when you need to:

  • Run all integration tests for a project.
  • Run a specific integration test suite (e.g., "API tests").
  • Run integration tests with code coverage analysis.

Examples

Example 1: Running All Integration Tests

User request: "/run-integration"

The skill will:

  1. Prepare the test environment (database, services).
  2. Execute all integration test suites defined in the project.
  3. Generate a report with pass/fail counts and coverage metrics.
  4. Clean up the test environment.

Example 2: Running a Specific Test Suite

User request: "/run-integration api"

The skill will:

  1. Prepare the test environment.
  2. Execute only the "api" integration test suite.
  3. Generate a report specific to the "api" suite.
  4. Clean up the test environment.

Best Practices

  • Configuration: Ensure test configurations are properly set up in test/integration/config.json, .env.test, or related files.
  • Dependencies: Define all necessary services and dependencies in the test environment configuration.
  • Test Design: Write focused integration tests that verify specific interactions between components.

Integration

This skill works seamlessly with other plugins by ensuring a clean and isolated test environment. It avoids conflicts with other processes and provides reliable results.

GitHub リポジトリ

jeremylongshore/claude-code-plugins-plus
パス: backups/skills-batch-20251204-000554/plugins/testing/integration-test-runner/skills/integration-test-runner
aiautomationclaude-codedevopsmarketplacemcp

関連スキル

content-collections

メタ

This skill provides a production-tested setup for Content Collections, a TypeScript-first tool that transforms Markdown/MDX files into type-safe data collections with Zod validation. Use it when building blogs, documentation sites, or content-heavy Vite + React applications to ensure type safety and automatic content validation. It covers everything from Vite plugin configuration and MDX compilation to deployment optimization and schema validation.

スキルを見る

creating-opencode-plugins

メタ

This skill provides the structure and API specifications for creating OpenCode plugins that hook into 25+ event types like commands, files, and LSP operations. It offers implementation patterns for JavaScript/TypeScript modules that intercept and extend the AI assistant's lifecycle. Use it when you need to build event-driven plugins for monitoring, custom handling, or extending OpenCode's capabilities.

スキルを見る

evaluating-llms-harness

テスト

This Claude Skill runs the lm-evaluation-harness to benchmark LLMs across 60+ standardized academic tasks like MMLU and GSM8K. It's designed for developers to compare model quality, track training progress, or report academic results. The tool supports various backends including HuggingFace and vLLM models.

スキルを見る

sglang

メタ

SGLang is a high-performance LLM serving framework that specializes in fast, structured generation for JSON, regex, and agentic workflows using its RadixAttention prefix caching. It delivers significantly faster inference, especially for tasks with repeated prefixes, making it ideal for complex, structured outputs and multi-turn conversations. Choose SGLang over alternatives like vLLM when you need constrained decoding or are building applications with extensive prefix sharing.

スキルを見る