MCP HubMCP Hub
スキル一覧に戻る

always-init

danielmiessler
更新日 Today
65 閲覧
14
1
14
GitHubで表示
その他aiautomation

について

always-initスキルは、すべてのユーザーリクエストに対して完全なPAIコンテキストを自動的に読み込み、連絡先、設定、セキュリティプロトコルがタスク処理前に確実に利用可能な状態にします。これはP0優先度要件として、すべてのユーザーメッセージに対して最初に起動される必要があります。この普遍的な初期化機能により、後続のすべての操作において完全なコンテキスト可用性が保証されます。

クイックインストール

Claude Code

推奨
プラグインコマンド推奨
/plugin add https://github.com/danielmiessler/PAIPlugin
Git クローン代替
git clone https://github.com/danielmiessler/PAIPlugin.git ~/.claude/skills/always-init

このコマンドをClaude Codeにコピー&ペーストしてスキルをインストールします

ドキュメント

ALWAYS-INIT - Universal Task Initializer


⚠️ CRITICAL SYSTEM REQUIREMENT ⚠️

AUTOMATIC INVOCATION REQUIRED: This skill MUST be automatically invoked as the FIRST action for EVERY user request without exception.

Trigger Pattern: ALL user messages/requests Priority Level: P0 (Highest - blocks all other operations) Automation Rule: if (userRequest) → invoke("always-init") → then processRequest()


🎯 Purpose

Universal context loader providing complete PAI (Personal AI Infrastructure):

  • 👥 Contacts: Alice, Bob, Carol, Dave, team members
  • 🛠️ Stack Preferences: TypeScript>Python, bun>npm, uv>pip
  • 🔒 Security Protocols: Repository safety, credential handling
  • 📝 Response Format: Structured output standards
  • 🎙️ Voice Routing: ElevenLabs voice IDs for agents
  • ⚙️ Operating Instructions: Personal preferences and workflows

❌ Consequences of Skipping

Without ALWAYS-INIT context loading:

  • Responses lack relationship/contact awareness
  • Wrong technical stacks used (npm instead of bun, pip instead of uv)
  • Security protocols violated
  • Incorrect response formatting
  • Missing personalization
  • Context-dependent decisions fail
  • Agent routing fails

🔄 Implementation Protocol

For AI Assistant (Claude):

1. Receive user request
2. ⚡ IMMEDIATELY: Skill("always-init")  ← THIS STEP
3. Wait for PAI context to load
4. THEN proceed with request processing

For Skill System (Automation):

// Automatic prepend to request pipeline
function handleUserRequest(request) {
  await invokeSkill("always-init");  // MANDATORY FIRST STEP
  const paiContext = loadContext();
  return processWithContext(request, paiContext);
}

🎯 Success Criteria

This skill is working correctly when:

  • ✅ Invoked before ANY tool use
  • ✅ Invoked before ANY other skill
  • ✅ Invoked before ANY response formulation
  • ✅ Invoked for 100% of user requests
  • ✅ PAI context available in all subsequent operations

📍 Context Loading

Execute: read ~/.claude/skills/PAI/SKILL.md

This provides the complete Personal AI Infrastructure context that all skills and responses depend on.

Once PAI context is loaded, proceed immediately with the user's actual request.

🏗️ Design Philosophy

This skill implements a "context-first" architecture where PAI loads universally rather than being distributed across individual skills. It acts as a bootstrap loader that:

  1. Triggers on every user interaction
  2. Loads PAI context once
  3. Gets out of the way
  4. Allows the actual task to proceed

This eliminates the need for individual skills to manually load PAI context and ensures consistent, complete context availability across all operations.


💡 Implementation Note:

Ideally, this skill should be hardcoded into the request handler rather than relying on manual invocation. The skill system should automatically prepend this to every request pipeline.

Alternative Approach: Add to system prompt: "Before responding to ANY user request, you MUST first invoke the always-init skill to load PAI context."

GitHub リポジトリ

danielmiessler/PAIPlugin
パス: skills/always-init

関連スキル

content-collections

メタ

This skill provides a production-tested setup for Content Collections, a TypeScript-first tool that transforms Markdown/MDX files into type-safe data collections with Zod validation. Use it when building blogs, documentation sites, or content-heavy Vite + React applications to ensure type safety and automatic content validation. It covers everything from Vite plugin configuration and MDX compilation to deployment optimization and schema validation.

スキルを見る

evaluating-llms-harness

テスト

This Claude Skill runs the lm-evaluation-harness to benchmark LLMs across 60+ standardized academic tasks like MMLU and GSM8K. It's designed for developers to compare model quality, track training progress, or report academic results. The tool supports various backends including HuggingFace and vLLM models.

スキルを見る

sglang

メタ

SGLang is a high-performance LLM serving framework that specializes in fast, structured generation for JSON, regex, and agentic workflows using its RadixAttention prefix caching. It delivers significantly faster inference, especially for tasks with repeated prefixes, making it ideal for complex, structured outputs and multi-turn conversations. Choose SGLang over alternatives like vLLM when you need constrained decoding or are building applications with extensive prefix sharing.

スキルを見る

cloudflare-turnstile

メタ

This skill provides comprehensive guidance for implementing Cloudflare Turnstile as a CAPTCHA-alternative bot protection system. It covers integration for forms, login pages, API endpoints, and frameworks like React/Next.js/Hono, while handling invisible challenges that maintain user experience. Use it when migrating from reCAPTCHA, debugging error codes, or implementing token validation and E2E tests.

スキルを見る