MCP HubMCP Hub
スキル一覧に戻る

etrid-compile-build

EojEdred
更新日 Yesterday
22 閲覧
0
GitHubで表示
メタaitestingdesign

について

このスキルは、マルチワークスペースのËtrid Rustコードベースをコンパイル、テスト、診断するための確定的な手順を提供します。より高速なビルドのためのキャッシュ機能を備え、E0282、E0412、トレイト境界などの一般的なコンパイラエラーに対して実用的な解決策を提示します。Substrateベースのプロジェクトにおける信頼性が高く効率的な開発にご利用ください。

クイックインストール

Claude Code

推奨
プラグインコマンド推奨
/plugin add https://github.com/EojEdred/Etrid
Git クローン代替
git clone https://github.com/EojEdred/Etrid.git ~/.claude/skills/etrid-compile-build

このコマンドをClaude Codeにコピー&ペーストしてスキルをインストールします

ドキュメント

etrid-compile-build

Detailed specification and instructions for the etrid-compile-build skill.

GitHub リポジトリ

EojEdred/Etrid
パス: 14-aidevs/skills/etrid-compile-build/etrid-compile-build

関連スキル

content-collections

メタ

This skill provides a production-tested setup for Content Collections, a TypeScript-first tool that transforms Markdown/MDX files into type-safe data collections with Zod validation. Use it when building blogs, documentation sites, or content-heavy Vite + React applications to ensure type safety and automatic content validation. It covers everything from Vite plugin configuration and MDX compilation to deployment optimization and schema validation.

スキルを見る

creating-opencode-plugins

メタ

This skill provides the structure and API specifications for creating OpenCode plugins that hook into 25+ event types like commands, files, and LSP operations. It offers implementation patterns for JavaScript/TypeScript modules that intercept and extend the AI assistant's lifecycle. Use it when you need to build event-driven plugins for monitoring, custom handling, or extending OpenCode's capabilities.

スキルを見る

evaluating-llms-harness

テスト

This Claude Skill runs the lm-evaluation-harness to benchmark LLMs across 60+ standardized academic tasks like MMLU and GSM8K. It's designed for developers to compare model quality, track training progress, or report academic results. The tool supports various backends including HuggingFace and vLLM models.

スキルを見る

sglang

メタ

SGLang is a high-performance LLM serving framework that specializes in fast, structured generation for JSON, regex, and agentic workflows using its RadixAttention prefix caching. It delivers significantly faster inference, especially for tasks with repeated prefixes, making it ideal for complex, structured outputs and multi-turn conversations. Choose SGLang over alternatives like vLLM when you need constrained decoding or are building applications with extensive prefix sharing.

スキルを見る